RATE OF CONVERGENCE AND EDGEWORTH-TYPE EXPANSION IN THE ENTROPIC CENTRAL LIMIT THEOREM

被引:36
作者
Bobkov, Sergey G. [1 ]
Chistyakov, Gennadiy P. [2 ]
Goetze, Friedrich [2 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
基金
美国国家科学基金会;
关键词
Entropy; entropic distance; central limit theorem; Edgeworth-type expansions; INEQUALITIES; MONOTONICITY; INFORMATION;
D O I
10.1214/12-AOP780
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An Edgeworth-type expansion is established for the entropy distance to the class of normal distributions of sums of i.i.d. random variables or vectors, satisfying minimal moment conditions.
引用
收藏
页码:2479 / 2512
页数:34
相关论文
共 26 条
[1]  
[Anonymous], 2004, INFORM THEORY CENTRA
[2]  
[Anonymous], 1954, LIMIT DISTRIBUTIONS
[3]  
[Anonymous], 1945, ACTA MATH-DJURSHOLM, DOI DOI 10.1007/BF02392223
[4]   Solution of Shannon's problem on the monotonicity of entropy [J].
Artstein, S ;
Ball, KM ;
Barthe, F ;
Naor, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 17 (04) :975-982
[5]   On the rate of convergence in the entropic central limit theorem [J].
Artstein, S ;
Ball, KM ;
Barthe, F ;
Naor, A .
PROBABILITY THEORY AND RELATED FIELDS, 2004, 129 (03) :381-390
[6]   ENTROPY AND THE CENTRAL-LIMIT-THEOREM [J].
BARRON, AR .
ANNALS OF PROBABILITY, 1986, 14 (01) :336-342
[7]  
Bhattacharya R.N., 1976, NORMAL APPROXIMATION
[8]   Non-Uniform Bounds in Local Limit Theorems in Case of Fractional Moments. II [J].
Bobkov, S. G. ;
Chistyakov, G. P. ;
Goetze, F. .
MATHEMATICAL METHODS OF STATISTICS, 2011, 20 (04) :269-287
[9]   Non-Uniform Bounds in Local Limit Theorems in Case of Fractional Moments. I [J].
Bobkov, S. G. ;
Chistyakov, G. P. ;
Goetze, F. .
MATHEMATICAL METHODS OF STATISTICS, 2011, 20 (03) :171-191
[10]   Concentration inequalities and limit theorems for randomized sums [J].
Bobkov, Sergey G. ;
Goetze, Friedrich .
PROBABILITY THEORY AND RELATED FIELDS, 2007, 137 (1-2) :49-81