RATE OF CONVERGENCE AND EDGEWORTH-TYPE EXPANSION IN THE ENTROPIC CENTRAL LIMIT THEOREM

被引:33
作者
Bobkov, Sergey G. [1 ]
Chistyakov, Gennadiy P. [2 ]
Goetze, Friedrich [2 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
基金
美国国家科学基金会;
关键词
Entropy; entropic distance; central limit theorem; Edgeworth-type expansions; INEQUALITIES; MONOTONICITY; INFORMATION;
D O I
10.1214/12-AOP780
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An Edgeworth-type expansion is established for the entropy distance to the class of normal distributions of sums of i.i.d. random variables or vectors, satisfying minimal moment conditions.
引用
收藏
页码:2479 / 2512
页数:34
相关论文
共 26 条
  • [1] [Anonymous], 2004, INFORM THEORY CENTRA
  • [2] [Anonymous], 1954, LIMIT DISTRIBUTIONS
  • [3] [Anonymous], 1945, ACTA MATH-DJURSHOLM, DOI DOI 10.1007/BF02392223
  • [4] Solution of Shannon's problem on the monotonicity of entropy
    Artstein, S
    Ball, KM
    Barthe, F
    Naor, A
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 17 (04) : 975 - 982
  • [5] On the rate of convergence in the entropic central limit theorem
    Artstein, S
    Ball, KM
    Barthe, F
    Naor, A
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2004, 129 (03) : 381 - 390
  • [6] ENTROPY AND THE CENTRAL-LIMIT-THEOREM
    BARRON, AR
    [J]. ANNALS OF PROBABILITY, 1986, 14 (01) : 336 - 342
  • [7] Bhattacharya R.N., 1976, NORMAL APPROXIMATION
  • [8] Non-Uniform Bounds in Local Limit Theorems in Case of Fractional Moments. II
    Bobkov, S. G.
    Chistyakov, G. P.
    Goetze, F.
    [J]. MATHEMATICAL METHODS OF STATISTICS, 2011, 20 (04) : 269 - 287
  • [9] Non-Uniform Bounds in Local Limit Theorems in Case of Fractional Moments. I
    Bobkov, S. G.
    Chistyakov, G. P.
    Goetze, F.
    [J]. MATHEMATICAL METHODS OF STATISTICS, 2011, 20 (03) : 171 - 191
  • [10] Concentration inequalities and limit theorems for randomized sums
    Bobkov, Sergey G.
    Goetze, Friedrich
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2007, 137 (1-2) : 49 - 81