On Rational Interpolation-Based List-Decoding and List-Decoding Binary Goppa Codes

被引:13
作者
Beelen, Peter [1 ]
Hoholdt, Tom [1 ]
Nielsen, Johan S. R. [1 ]
Wu, Yingquan [2 ]
机构
[1] Tech Univ Denmark, Dept Appl Math & Comp Sci, DK-2800 Lyngby, Denmark
[2] Sandforce Inc, Milpitas, CA 95035 USA
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
Goppa code; Johnson radius; list decoding; list size; rational interpolation; Reed-Solomon code; REED-SOLOMON CODES; POLYNOMIALS; EQUIVALENCE; ALGORITHMS; BERLEKAMP; EQUATIONS;
D O I
10.1109/TIT.2013.2243800
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We derive the Wu list-decoding algorithm for generalized Reed-Solomon (GRS) codes by using Grobner bases over modules and the Euclidean algorithm as the initial algorithm instead of the Berlekamp-Massey algorithm. We present a novel method for constructing the interpolation polynomial fast. We give a new application of the Wu list decoder by decoding irreducible binary Goppa codes up to the binary Johnson radius. Finally, we point out a connection between the governing equations of the Wu algorithm and the Guruswami-Sudan algorithm, immediately leading to equality in the decoding range and a duality in the choice of parameters needed for decoding, both in the case of GRS codes and in the case of Goppa codes.
引用
收藏
页码:3269 / 3281
页数:13
相关论文
共 31 条
[1]  
Aho A. V., 1974, The design and analysis of computer algorithms
[2]   Linear diophantine equations over polynomials and soft decoding of Reed-Solomon codes [J].
Alekhnovich, M .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (07) :2257-2265
[3]   A Parametric Approach to List Decoding of Reed-Solomon Codes Using Interpolation [J].
Ali, Mortuza ;
Kuijper, Margreta .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (10) :6718-6728
[4]  
[Anonymous], 1978, The Theory of Error-Correcting Codes
[5]  
[Anonymous], 2003, Modern Computer Algebra
[6]  
Augot D., 2010, LIST DECODING BINARY
[7]   Key equations for list decoding of Reed-Solomon codes and how to solve them [J].
Beelen, Peter ;
Brander, Kristian .
JOURNAL OF SYMBOLIC COMPUTATION, 2010, 45 (07) :773-786
[8]  
BERLEKAMP E., 2015, Algebraic Coding Theory
[9]  
Bernstein D., 2011, SIMPLIFIED HIGH SPEE
[10]  
Blahut R., 1983, Theory and Practice of Error Control Codes