Entrapment of sulfur in hierarchical porous graphene for lithium-sulfur batteries with high rate performance from-40 to 60 °C

被引:243
作者
Huang, Jia-Qi [1 ]
Liu, Xiao-Fei [1 ,2 ]
Zhang, Qiang [1 ]
Chen, Cheng-Meng [3 ]
Zhao, Meng-Qiang [1 ]
Zhang, Shu-Mao [1 ]
Zhu, Wancheng [2 ]
Qian, Wei-Zhong [1 ]
Wei, Fei [1 ]
机构
[1] Tsinghua Univ, Dept Chem Engn, Beijing Key Lab Green Chem React Engn & Technol, Beijing 100084, Peoples R China
[2] Qufu Normal Univ, Dept Chem Engn, Qufu 273165, Shandong, Peoples R China
[3] Chinese Acad Sci, Inst Coal Chem, Key Lab Carbon Mat, Taiyuan 030001, Peoples R China
关键词
Graphene; Li-S battery; Sulfur; Nanocomposite; Energy storage; LI-S BATTERIES; CATHODE MATERIAL; HIGH-CAPACITY; COMPOSITE; OXIDE; ENERGY; CELLS;
D O I
10.1016/j.nanoen.2012.10.003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Li-S battery is with a much greater theoretical energy density than those of conventional lithium ion batteries. The key to achieve a high performance electrode for Li-S battery lies in the arrangement of the building blocks into a well-designed structure, in which the nanocarbon framework not only acts as an electronic conduit to the encapsulated active materials but also serves as a mini-electrochemical reaction chamber. Therefore, a nanocomposite with sulfur entrapped into hierarchical porous graphene was proposed and fabricated for Li-S batteries. The nanocomposite electrode exhibits high discharging capacitance of 1068 and 543 mA h g(-1) at a current density of 0.5 and 10 C, respectively. The discharging capacity of 386 mA h g(-1) can be presented at ultra-low temperature of -40 degrees C, which far exceeds the operating range of conventional lithium-ion batteries. The large scale produced hierarchal graphene was mainly decorated with epoxy and hydroxyl groups, which can enhance the binding of S to the C-C bonds due to the induced ripples by the functional groups. These results provided a promising electrode material for energy storage device with high capacitance, which is important for the increasing demands of power sources in cold environments, such as battery systems for electric vehicles in cold zone or for aeronautic applications. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:314 / 321
页数:8
相关论文
共 32 条
  • [1] Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
  • [2] Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries
    Cao, Yuliang
    Li, Xiaolin
    Aksay, Ilhan A.
    Lemmon, John
    Nie, Zimin
    Yang, Zhenguo
    Liu, Jun
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (17) : 7660 - 7665
  • [3] Structural evolution during annealing of thermally reduced graphene nanosheets for application in supercapacitors
    Chen, Cheng-Meng
    Zhang, Qiang
    Yang, Mang-Guo
    Huang, Chun-Hsien
    Yang, Yong-Gang
    Wang, Mao-Zhang
    [J]. CARBON, 2012, 50 (10) : 3572 - 3584
  • [4] Sulfur-Impregnated Activated Carbon Fiber Cloth as a Binder-Free Cathode for Rechargeable Li-S Batteries
    Elazari, Ran
    Salitra, Gregory
    Garsuch, Arnd
    Panchenko, Alexander
    Aurbach, Doron
    [J]. ADVANCED MATERIALS, 2011, 23 (47) : 5641 - +
  • [5] Graphene-enveloped sulfur in a one pot reaction: a cathode with good coulombic efficiency and high practical sulfur content
    Evers, Scott
    Nazar, Linda F.
    [J]. CHEMICAL COMMUNICATIONS, 2012, 48 (09) : 1233 - 1235
  • [6] Sulfur-Impregnated Disordered Carbon Nanotubes Cathode for Lithium-Sulfur Batteries
    Guo, Juchen
    Xu, Yunhua
    Wang, Chunsheng
    [J]. NANO LETTERS, 2011, 11 (10) : 4288 - 4294
  • [7] High "C" rate Li-S cathodes: sulfur imbibed bimodal porous carbons
    He, Guang
    Ji, Xiulei
    Nazar, Linda
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (08) : 2878 - 2883
  • [8] Porous Hollow Carbon@Sulfur Composites for High-Power Lithium-Sulfur Batteries
    Jayaprakash, N.
    Shen, J.
    Moganty, Surya S.
    Corona, A.
    Archer, Lynden A.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (26) : 5904 - 5908
  • [9] Graphene Oxide as a Sulfur Immobilizer in High Performance Lithium/Sulfur Cells
    Ji, Liwen
    Rao, Mumin
    Zheng, Haimei
    Zhang, Liang
    Li, Yuanchang
    Duan, Wenhui
    Guo, Jinghua
    Cairns, Elton J.
    Zhang, Yuegang
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (46) : 18522 - 18525
  • [10] Stabilizing lithium-sulphur cathodes using polysulphide reservoirs
    Ji, Xiulei
    Evers, Scott
    Black, Robert
    Nazar, Linda F.
    [J]. NATURE COMMUNICATIONS, 2011, 2