Noise Masking Recurrent Neural Network for Respiratory Sound Classification

被引:52
作者
Kochetov, Kirill [1 ]
Putin, Evgeny [1 ]
Balashov, Maksim [1 ]
Filchenkov, Andrey [1 ]
Shalyto, Anatoly [1 ]
机构
[1] ITMO Univ, Comp Technol Lab, 49 Kronverksky Pr, St Petersburg 197101, Russia
来源
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT III | 2018年 / 11141卷
关键词
Respiratory sound classification; Recurrent neural networks; Deep learning;
D O I
10.1007/978-3-030-01424-7_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel architecture called noise masking recurrent neural network (NMRNN) for lung sound classification. The model jointly learns to extract only important respiratory-like frames without redundant noise and then by exploiting this information is trained to classify lung sounds into four categories: normal, containing wheezes, crackles and both wheezes and crackles. We compare the performance of our model with machine learning based models. As a result, the NMRNN model reaches state-of-the-art performance on recently introduced publicly available respiratory sound database.
引用
收藏
页码:208 / 217
页数:10
相关论文
共 22 条
  • [1] [Anonymous], 2016, 15 INT C ART INT KNO
  • [2] [Anonymous], 2018, TIME SERIES PREDICTI
  • [3] [Anonymous], 2015, Technical report
  • [4] Bahoura M, 2004, P ANN INT IEEE EMBS, V26, P9
  • [5] Bergstra J, 2012, J MACH LEARN RES, V13, P281
  • [6] Berouti M., 1979, ICASSP 79. 1979 IEEE International Conference on Acoustics, Speech and Signal Processing, P208
  • [7] Cho K., 2014, ARXIV, DOI 10.3115/v1/w14-4012
  • [8] Graves A, 2013, INT CONF ACOUST SPEE, P6645, DOI 10.1109/ICASSP.2013.6638947
  • [9] Hastie T., 2009, The elements of statistical learning, DOI DOI 10.1007/978-0-387-84858-7
  • [10] Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1007/978-3-642-24797-2, 10.1162/neco.1997.9.1.1]