Finite Elements Method Simulation of P(VDF-TrFE) Piezoelectric Sensor for Internet of Things Application

被引:0
作者
Chow, Khoon-Keat [1 ,2 ]
Abdal-Kadhim, Ali Mohammed [1 ]
Kok, Swee Leong [1 ]
Lau, Kok-Tee [3 ]
机构
[1] Univ Tekn Malaysia Melaka, Fak Kejuruteraan Elekt & Komputer, Ctr Telecommun Res & Innovat, Adv Sensors & Embedded Control Syst Res Grp,Hang, Durian Tunggal 76100, Melaka, Malaysia
[2] Kolej Komuniti Sungai Siput, Unit Res Innovat & Commercializat, Elect Technol Program, Kampung Sungai Sejuk,Postbox 390, Sungai Siput 31100, Perak, Malaysia
[3] Univ Tekn Malaysia Melaka, Fak Teknol Kejuruteraan Mekan & Pembuatan, Advance Mfg Ctr, Carbon Res Technol Res Grp,Hang Tuah Jaya, Durian Tunggal 76100, Melaka, Malaysia
来源
INTERNATIONAL JOURNAL OF INTEGRATED ENGINEERING | 2019年 / 11卷 / 01期
关键词
Piezoelectric sensor; P(VDF-TrFE); Internet of Things; Comsol;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents finite element method (FEM) simulation using P(VDF-TrFE) as piezoelectric material for Internet of things application. The simulation was conducted using COMSOL Multiphyisc 5.1 to study the resonance frequency, stress, displacement and load dependence for the P(VDF-TrFE) piezoelectric as a batteryless sensor whenever there is mechanical vibration present on the piezoelectric material. The simulation results obtained with maximum displacement and stress are 0.3 mm and 1.01 x107 N/m2 at resonant frequency of 131 Hz. Electrical properties with maximum voltage of 24.2 mV power output of 3.2 nW was obtained at 18 6 k Omega( )under the acceleration of 1 g at resonant frequency. The optimized design of P(VDF-TrFE) piezoelectric sensor was applied in the step monitoring application via internet of things (IoT) system.
引用
收藏
页码:77 / 83
页数:7
相关论文
共 19 条
  • [1] [Anonymous], 1987, IEEE Standard on Piezoelectricity, Std 176-1987
  • [2] Comparisons between PZT and PVDF thick films technologies in the design of low-cost pyroelectric sensors
    Capineri, L
    Masotti, L
    Ferrari, V
    Marioli, D
    Taroni, A
    Mazzoni, M
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (11) : 4906 - 4910
  • [3] Chow K-K, 2018, J TELECOMMUN ELECT C, V10, P63
  • [4] Real-Time Monitoring via Patch-Type Piezoelectric Force Sensors for Internet of Things Based Logistics
    Chuang, Cheng-Hsin
    Lee, Da-Huei
    Chang, Wan-Jung
    Weng, Wan-Ching
    Shaikh, Muhammad Omar
    Huang, Chung-Lin
    [J]. IEEE SENSORS JOURNAL, 2017, 17 (08) : 2498 - 2506
  • [5] A Preliminary Study on the IoT-Based Pavement Monitoring Platform Based on the Piezoelectric-Cantilever-Beam Powered Sensor
    Hou, Yue
    Wang, Linbing
    Wang, Dawei
    Yang, Hailu
    Guo, Meng
    Ye, Zhoujing
    Tong, Xinlong
    [J]. ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2017, 2017
  • [6] Piezoelectric smart biomaterials for bone and cartilage tissue engineering
    Jacob, Jaicy
    More, Namdev
    Kalia, Kiran
    Kapusetti, Govinda
    [J]. INFLAMMATION AND REGENERATION, 2018, 38
  • [7] Jian-Ping Su, 2017, 2017 International Conference on Applied System Innovation (ICASI). Proceedings, P331, DOI 10.1109/ICASI.2017.7988419
  • [8] PIEZOELECTRICITY, ITS HISTORY AND APPLICATIONS
    MASON, WP
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1981, 70 (06) : 1561 - 1566
  • [9] A review of wearable sensors and systems with application in rehabilitation
    Patel, Shyamal
    Park, Hyung
    Bonato, Paolo
    Chan, Leighton
    Rodgers, Mary
    [J]. JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2012, 9
  • [10] High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene)
    Persano, Luana
    Dagdeviren, Canan
    Su, Yewang
    Zhang, Yihui
    Girardo, Salvatore
    Pisignano, Dario
    Huang, Yonggang
    Rogers, John A.
    [J]. NATURE COMMUNICATIONS, 2013, 4