ON SHRINKING GRADIENT RICCI SOLITONS WITH NONNEGATIVE SECTIONAL CURVATURE

被引:2
作者
Cai, Mingliang [2 ,1 ]
机构
[1] Univ Miami, Dept Math, Coral Gables, FL 33124 USA
关键词
shrinking gradient Ricci soliton; rigidity; nonnegative sectional curvature; REAL-ANALYTICITY; CLASSIFICATION; MANIFOLDS; OPERATOR; FLOW;
D O I
10.2140/pjm.2015.277.61
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Perelman proved that an open 3-dimensional shrinking gradient Ricci soliton with bounded nonnegative sectional curvature is a quotient of S-2 x R or R-3. We extend this result to higher dimensions with a decay condition on the Ricci tensor.
引用
收藏
页码:61 / 76
页数:16
相关论文
共 19 条
[1]   REAL ANALYTICITY OF SOLUTIONS OF HAMILTONS EQUATION [J].
BANDO, S .
MATHEMATISCHE ZEITSCHRIFT, 1987, 195 (01) :93-97
[2]  
Böhm C, 2008, ANN MATH, V167, P1079
[3]  
Cao HD, 2010, J DIFFER GEOM, V85, P175
[4]   Compact gradient shrinking Ricci solitons with positive curvature operator [J].
Cao, Xiaodong .
JOURNAL OF GEOMETRIC ANALYSIS, 2007, 17 (03) :425-433
[5]   ON LOCALLY CONFORMALLY FLAT GRADIENT SHRINKING RICCI SOLITONS [J].
Cao, Xiaodong ;
Wang, Biao ;
Zhang, Zhou .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2011, 13 (02) :269-282
[6]  
Chen BL, 2009, J DIFFER GEOM, V82, P363
[7]   Rigidity of shrinking Ricci solitons [J].
Fernandez-Lopez, Manuel ;
Garcia-Rio, Eduardo .
MATHEMATISCHE ZEITSCHRIFT, 2011, 269 (1-2) :461-466
[8]  
Hamilton R., 1993, SURVEYS IN DIFFERENT, P7
[9]  
Hamilton R. S., 1988, AM MATH SOC, V71, P237
[10]  
HAMILTON RS, 1986, J DIFFER GEOM, V24, P153