DIFFUSION ASYMPTOTICS OF A KINETIC MODEL FOR GASEOUS MIXTURES

被引:36
作者
Boudin, Laurent [1 ,2 ]
Grec, Berenice [2 ,3 ]
Pavic, Milana [4 ,5 ]
Salvarani, Francesco [6 ]
机构
[1] UPMC Univ Paris 06, UMR LJLL 7598, F-75005 Paris, France
[2] INRIA Paris Rocquencourt, F-78153 Le Chesnay, France
[3] Univ Paris 05, CNRS UMR 8145, MAP5, F-75006 Paris, France
[4] PRES UniverSud Paris, ENS Cachan, CMLA, F-94235 Cachan, France
[5] Univ Novi Sad, Fac Sci, Dept Math & Informat, Novi Sad 21000, Serbia
[6] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
关键词
Boltzmann equations; Fredholm's alternative; Chapman-Enskog expansion; diffusive scaling; multispecies mixture; FLUID DYNAMIC LIMITS; BOLTZMANN-EQUATION; FORMAL DERIVATIONS; GAS-MIXTURE; MECHANICS; WAVES;
D O I
10.3934/krm.2013.6.13
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we consider the non-reactive fully elastic Boltzmann equations for mixtures in the diffusive scaling. We mainly use a Hilbert expansion of the distribution functions. After briefly recalling the H-theorem, the lower-order non trivial equality obtained from the Boltzmann equations leads to a linear functional equation in the velocity variable. This equation is solved thanks to the Fredholm alternative. Since we consider multicomponent mixtures, the classical techniques introduced by Grad cannot be applied, and we propose a new method to treat the terms involving particles with different masses.
引用
收藏
页码:137 / 157
页数:21
相关论文
共 33 条
[1]   FLUID DYNAMIC LIMITS OF KINETIC-EQUATIONS .1. FORMAL DERIVATIONS [J].
BARDOS, C ;
GOLSE, F ;
LEVERMORE, D .
JOURNAL OF STATISTICAL PHYSICS, 1991, 63 (1-2) :323-344
[2]   FLUID DYNAMIC LIMITS OF KINETIC EQUATIONS-II CONVERGENCE PROOFS FOR THE BOLTZMANN-EQUATION [J].
BARDOS, C ;
GOLSE, F ;
LEVERMORE, CD .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (05) :667-753
[3]  
BARDOS C, 1989, CR ACAD SCI I-MATH, V309, P727
[4]   Binary fluids with long range segregating interaction. I: Derivation of kinetic and hydrodynamic equations [J].
Bastea, S ;
Esposito, R ;
Lebowitz, JL ;
Marra, R .
JOURNAL OF STATISTICAL PHYSICS, 2000, 101 (5-6) :1087-1136
[5]   An asymptotic preserving scheme for the Kac model of the Boltzmann equation in the diffusion limit [J].
Bennoune, Mounir ;
Lemou, Mohammed ;
Mieussens, Luc .
CONTINUUM MECHANICS AND THERMODYNAMICS, 2009, 21 (05) :401-421
[6]  
Bisi M., IN PRESS
[7]  
Boudin L., MAXWELL STEFAN UNPUB
[8]  
BOURGAT JF, 1994, EUR J MECH B-FLUID, V13, P237
[9]  
Cercignani C., 1988, BOLTZMANN EQUATION I
[10]  
Chapman S., 1990, Thermal Conduction and Diffusion in Gases