Compressible Fluids Interacting with a Linear-Elastic Shell

被引:41
作者
Breit, Dominic [1 ]
Schwarzacher, Sebastian [2 ]
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Charles Univ Prague, Fac Math & Phys, Dept Anal, Sokolovska 83, Prague 18675, Czech Republic
关键词
NAVIER-STOKES EQUATIONS; KOITER TYPE SHELL; WEAK SOLUTIONS; VISCOUS-FLUID; UNSTEADY INTERACTION; EXISTENCE; DOMAINS; SYSTEM; ENERGY; MOTION;
D O I
10.1007/s00205-017-1199-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Navier-Stokes equations governing the motion of an isentropic compressible fluid in three dimensions interacting with a flexible shell of Koiter type. The latter one constitutes a moving part of the boundary of the physical domain. Its deformation is modeled by a linearized version of Koiter's elastic energy. We show the existence of weak solutions to the corresponding system of PDEs provided the adiabatic exponent satisfies gamma > 12/7 (gamma > 1 in two dimensions). The solution exists until the moving boundary approaches a self-intersection. This provides a compressible counterpart of the results in Lengeler and Ruzicka (Arch Ration Mech Anal 211(1):205-255, 2014) on incompressible Navier-Stokes equations.
引用
收藏
页码:495 / 562
页数:68
相关论文
共 50 条
[41]   TIME-PERIODIC WEAK SOLUTIONS FOR AN INCOMPRESSIBLE NEWTONIAN FLUID INTERACTING WITH AN ELASTIC PLATE\ast [J].
Mindrila, Claudiu ;
Schwarzacher, Sebastian .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (04) :4139-4162
[42]   WEAK-STRONG UNIQUENESS FOR AN ELASTIC PLATE INTERACTING WITH THE NAVIER-STOKES EQUATION\ast [J].
Schwarzacher, Sebastian ;
Sroczinski, Matthias .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (04) :4104-4138
[43]   A note on complete bounded trajectories and attractors for compressible self-gravitating fluids [J].
Guo, Rongcong ;
Jiang, Fei ;
Yin, Junping .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) :1933-1944
[44]   Global classical solutions to the compressible micropolar viscous fluids with large oscillations and vacuum [J].
Zhu, Canze ;
Tao, Qiang .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (01) :28-53
[45]   Multiple Scales and Singular Limits for Compressible Rotating Fluids with General Initial Data [J].
Feireisl, Eduard ;
Novotny, Antonin .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (06) :1104-1127
[46]   Effect of Prestresses on Generalized Lamb Waves in an Elastic Compressible Layer Interacting with a Viscous Liquid Layer [J].
Bagno, O. M. .
INTERNATIONAL APPLIED MECHANICS, 2023, 59 (04) :417-428
[47]   LONGITUDINAL-RADIAL VIBRATIONS OF THE ELASTIC CYLINDRICAL SHELL FILLED WITH A VISCOUS COMPRESSIBLE FLUID [J].
Khudoynazarov, Kh Kh ;
Khalmuradov, R., I ;
Yalgashev, B. F. .
VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2021, (69) :139-154
[48]   The finite weak solutions for the compressible micropolar fluids model [J].
Su, Jingrui ;
Yang, Yanjiong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 548 (01)
[49]   The Cauchy problem for the nonisentropic compressible MHD fluids: Optimal time-decay rates [J].
Huang, Wenting ;
Fu, Shengbin .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (08) :9708-9735
[50]   Large-time behaviour of solutions to a class of non-Newtonian compressible fluids [J].
Guo, Shanshan ;
Tan, Zhong .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2017, 24 (03)