Compressible Fluids Interacting with a Linear-Elastic Shell

被引:40
作者
Breit, Dominic [1 ]
Schwarzacher, Sebastian [2 ]
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Charles Univ Prague, Fac Math & Phys, Dept Anal, Sokolovska 83, Prague 18675, Czech Republic
关键词
NAVIER-STOKES EQUATIONS; KOITER TYPE SHELL; WEAK SOLUTIONS; VISCOUS-FLUID; UNSTEADY INTERACTION; EXISTENCE; DOMAINS; SYSTEM; ENERGY; MOTION;
D O I
10.1007/s00205-017-1199-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Navier-Stokes equations governing the motion of an isentropic compressible fluid in three dimensions interacting with a flexible shell of Koiter type. The latter one constitutes a moving part of the boundary of the physical domain. Its deformation is modeled by a linearized version of Koiter's elastic energy. We show the existence of weak solutions to the corresponding system of PDEs provided the adiabatic exponent satisfies gamma > 12/7 (gamma > 1 in two dimensions). The solution exists until the moving boundary approaches a self-intersection. This provides a compressible counterpart of the results in Lengeler and Ruzicka (Arch Ration Mech Anal 211(1):205-255, 2014) on incompressible Navier-Stokes equations.
引用
收藏
页码:495 / 562
页数:68
相关论文
共 43 条
[1]   Weighted Poincare and Korn inequalities for Holder α domains [J].
Acosta, G ;
Durán, RG ;
Lombardi, AL .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2006, 29 (04) :387-400
[2]  
[Anonymous], 1969, Quelques methodes de resolution des problemes aux limites non lineaires
[3]  
[Anonymous], 1960, The theory of thin elastic shells
[4]  
[Anonymous], 2003, SOBOLEV SPACES
[5]  
[Anonymous], 1966, K NED AKAD VAN WET-B
[6]  
[Anonymous], 2002, The Theory and Practice of Hydrodynamics and Vibration
[7]  
[Anonymous], 1970, SIBIRSK MAT Z
[8]  
[Anonymous], 2014, Fluid-Structure Interaction and Biomedical Applications
[9]   Existence of weak solutions for an interaction problem between an elastic structure and a compressible viscous fluid [J].
Boulakia, M .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (11) :1515-1554
[10]   STABILITY AND CONVERGENCE ANALYSIS OF THE EXTENSIONS OF THE KINEMATICALLY COUPLED SCHEME FOR THE FLUID-STRUCTURE INTERACTION [J].
Bukac, Martina ;
Muha, Boris .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (05) :3032-3061