Nucleic acid nanotechnology for cancer treatment

被引:33
作者
Jin, Jun-O [1 ,2 ]
Kim, Gyurin [3 ]
Hwang, Juyoung [2 ]
Han, Kyung Ho [4 ]
Kwak, Minseok [3 ,5 ]
Lee, Peter C. W. [4 ]
机构
[1] Fudan Univ, Shanghai Med Coll, Shanghai Publ Hlth Clin Ctr, Shanghai 201508, Peoples R China
[2] Yeungnam Univ, Dept Med Biotechnol, Gyongsan 38541, South Korea
[3] Pukyong Natl Univ, Dept Chem, Busan 48513, South Korea
[4] Univ Ulsan, ASAN Med Ctr, Dept Biomed Sci, Coll Med, Seoul 05505, South Korea
[5] DWI Leibniz Inst Interact Mat, D-52056 Aachen, Germany
来源
BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER | 2020年 / 1874卷 / 01期
基金
新加坡国家研究基金会;
关键词
Nucleic acid; Cancer therapy; Nanoparticle; Gene therapy; Immunotherapy; ROLLING CIRCLE AMPLIFICATION; CO-DELIVERY; SIRNA DELIVERY; DENDRITIC CELLS; DRUG-DELIVERY; RECENT PROGRESS; SYNERGISTIC TREATMENT; MULTIDRUG-RESISTANCE; CAMPTOTHECIN PRODRUG; EFFICIENT DELIVERY;
D O I
10.1016/j.bbcan.2020.188377
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cancer is one of the most prevalent potentially lethal diseases. With the increase in the number of investigations into the uses of nanotechnology, many nucleic acid (NA)-based nanostructures such as small interfering RNA, microRNA, aptamers, and immune adjuvant NA have been applied to treat cancer. Here, we discuss studies on the applications of NA in cancer treatment, recent research trends, and the limitations and prospects of specific NA-mediated gene therapy and immunotherapy for cancer treatment. The NA structures used for cancer therapy consist only of NA or hybrids comprising organic or inorganic substances integrated with functional NA. We also discuss delivery vehicles for therapeutic NA and anti-cancer agents, and recent trends in NA-based gene therapy and immunotherapy against cancer.
引用
收藏
页数:12
相关论文
共 172 条
[1]  
Aigner A, 2007, CURR OPIN MOL THER, V9, P345
[2]  
[Anonymous], 2019, SEMINARS CANC BIOL
[3]  
[Anonymous], 2019, SEMINARS CANC BIOL
[4]   siRNA Delivery Using a Cationic-Lipid-Based Highly Selective Human DNA Ligase I Inhibitor [J].
Bathula, Surendar R. ;
Sharma, Komal ;
Singh, Deependra K. ;
Reddy, Muktapuram P. ;
Sajja, Pushpa R. ;
Deshmukh, Amit L. ;
Banerjee, Dibyendu .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (02) :1616-1622
[5]   DNA rendering of polyhedral meshes at the nanoscale [J].
Benson, Erik ;
Mohammed, Abdulmelik ;
Gardell, Johan ;
Masich, Sergej ;
Czeizler, Eugen ;
Orponen, Pekka ;
Hogberg, Bjorn .
NATURE, 2015, 523 (7561) :441-U139
[6]   Specific Delivery of MiRNA for High Efficient Inhibition of Prostate Cancer by RNA Nanotechnology [J].
Binzel, Daniel W. ;
Shu, Yi ;
Li, Hui ;
Sun, Meiyan ;
Zhang, Qunshu ;
Shu, Dan ;
Guo, Bin ;
Guo, Peixuan .
MOLECULAR THERAPY, 2016, 24 (07) :1267-1277
[7]   Effective cancer immunotherapy in mice by polyIC-imiquimod complexes and engineered magnetic nanoparticles [J].
Bocanegra Gondan, Ana Isabel ;
Ruiz-de-Angulo, Ane ;
Zabaleta, Aintzane ;
Gomez Blanco, Nina ;
Macarena Cobaleda-Siles, Beatriz ;
Jesus Garcia-Granda, Maria ;
Padro, Daniel ;
Llop, Jordi ;
Arnaiz, Blanca ;
Gato, Maria ;
Escors, David ;
Mareque-Rivas, Juan C. .
BIOMATERIALS, 2018, 170 :95-115
[8]   Advances in Toll-like receptor biology: Modes of activation by diverse stimuli [J].
Bryant, Clare E. ;
Gay, Nick J. ;
Heymans, Stephane ;
Sacre, Sandra ;
Schaefer, Liliana ;
Midwood, Kim S. .
CRITICAL REVIEWS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2015, 50 (05) :359-379
[9]   RNAi therapeutics: a potential new class of pharmaceutical drugs [J].
Bumcrot, David ;
Manoharan, Muthiah ;
Koteliansky, Victor ;
Sah, Dinah W. Y. .
NATURE CHEMICAL BIOLOGY, 2006, 2 (12) :711-719
[10]   Effects of linker sequences on vesicle fusion mediated by lipid-anchored DNA oligonucleotides [J].
Chan, Yee-Hung M. ;
van Lengerich, Bettina ;
Boxer, Steven G. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (04) :979-984