Distance function selection for multivariate time-series

被引:1
作者
Morgachev, Gleb [1 ]
Goncharov, Alexey [1 ]
Strijov, Vadim [1 ]
机构
[1] Moscow Inst Phys & Technol, Moscow, Russia
来源
2019 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE: APPLICATIONS AND INNOVATIONS (IC-AIAI 2019) | 2019年
关键词
time-series; dynamic alignment; cost function; multivariate time-series; distance function;
D O I
10.1109/IC-AIAI48757.2019.00021
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates the problem of optimal distance function selection to optimize the distance between multivariate time series. The dynamic time warping method of univariate time-series defines the warping path and uses its cost as the distance function. To find this path it uses various pairwise distances between time-series. This work examines a generalization of the time warping algorithm in case of multivariate time-series. The novelty of the paper is the comparison of various metrics between the multivariate values of time-series. The distances induced by L-1, L-2 norms and cosine distances are compared. This work also proposes the multivariate adaptation of the optimized time warping algorithm. The experiment runs subsequence search and clustering problems for multivariate time-series. The given cost functions are evaluated on three data sets: two data sets with labeled physical human activity data from wearable devices and coordinates and the pressing force in the process of writing characters.
引用
收藏
页码:66 / 70
页数:5
相关论文
共 14 条
[1]  
Bagnall A., 2018, UEA MULTIVARIATE TIM
[2]  
Efron B., 1986, Stat. Sci., V1, P54, DOI [10.1214/ss/1177013815, 10.1214/ss/1177013817, DOI 10.1214/SS/1177013817]
[3]  
Goncharov A., 2019, WEIGHTED DYNAMIC TIM
[4]   Analysis of Dissimilarity Set Between Time Series [J].
Goncharov A.V. ;
Strijov V.V. .
Computational Mathematics and Modeling, 2018, 29 (3) :359-366
[5]  
Keogh E., 2001, SIAM INT C DATA MINI
[6]  
Keogh EJ, 1999, LECT NOTES ARTIF INT, V1704, P1
[7]   Mobile Sensor Data Anonymization [J].
Malekzadeh, Mohammad ;
Clegg, Richard G. ;
Cavallaro, Andrea ;
Haddadi, Hamed .
PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON INTERNET OF THINGS DESIGN AND IMPLEMENTATION (IOTDI '19), 2019, :49-58
[8]   A global averaging method for dynamic time warping, with applications to clustering [J].
Petitjean, Francois ;
Ketterlin, Alain ;
Gancarski, Pierre .
PATTERN RECOGNITION, 2011, 44 (03) :678-693
[9]  
Rakthanmanon Thanawin, 2012, KDD, V2012, P262, DOI 10.1145/2339530.2339576
[10]   Toward accurate dynamic time warping in linear time and space [J].
Salvadora, Stan ;
Chan, Philip .
INTELLIGENT DATA ANALYSIS, 2007, 11 (05) :561-580