Lifespan estimates for local in time solutions to the semilinear heat equation on the Heisenberg group

被引:17
作者
Georgiev, Vladimir [1 ,2 ,3 ]
Palmieri, Alessandro [1 ]
机构
[1] Univ Pisa, Dept Math, Largo B Pontecorvo 5, I-56127 Pisa, Italy
[2] Waseda Univ, Fac Sci & Engn, Shinjuku Ku, 3-4-1 Okubo, Tokyo 1698555, Japan
[3] BAS, Inst Math & Informat, Acad G Bonchev Str,Block 8, Sofia 1113, Bulgaria
关键词
Semilinear heat equation; Heisenberg group; Critical exponent of Fujita type; Lifespan estimates; Test function method; Weighted L-infinity spaces; WAVE-EQUATION; NONEXISTENCE;
D O I
10.1007/s10231-020-01023-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the semilinear Cauchy problem for the heat equation with power nonlinearity in the Heisenberg group H-n. The heat operator is given in this case by partial differential partial derivative(t)-Delta(H), where Delta(H) is the so-called sub-Laplacian on H-n. We prove that the Fujita exponent 1+2/Q is critical, where Q=2n+2is the homogeneous dimension of H-n. Furthermore, we prove sharp lifespan estimates for local in time solutions in the subcritical case and in the critical case. In order to get the upper bound estimate for the lifespan (especially, in the critical case), we employ a revisited test function method developed recently by Ikeda-Sobajima. On the other hand, to find the lower bound estimate for the lifespan, we prove a local in time result in weighted L-infinity space.
引用
收藏
页码:999 / 1032
页数:34
相关论文
共 27 条
[1]   Hamilton-Jacobi theory and the heat kernel on Heisenberg groups [J].
Beals, R ;
Gaveau, B ;
Greiner, PC .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2000, 79 (07) :633-689
[2]  
Bonfiglioli A, 2007, SPRINGER MONOGR MATH, P3
[3]  
Fischer V., 2016, Progress in Mathematics
[4]  
Folland G.B., 1982, Math. Notes, V28, pxii+285
[5]  
FOLLAND GB, 1975, ARK MAT, V13, P161, DOI 10.1007/BF02386204
[6]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109
[7]  
Fujiwara K., 2019, Pliska Stud. Math., V30, P7
[9]   Upper Bound Estimates for Local in Time Solutions to the Semilinear Heat Equation on Stratified Lie Groups in the Sub-Fujita Case [J].
Georgiev, Vladimir ;
Palmieri, Alessandro .
SIXTH INTERNATIONAL CONFERENCE NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES (NTADES 2019), 2019, 2159
[10]  
Greiner P, 2017, BULL INST MATH ACAD, V12, P1, DOI 10.21915/BIMAS.2017101