We report the rf performance of a single cell superconducting radiofrequency cavity after low temperature baking in a nitrogen environment. A significant increase in quality factor has been observed when the cavity was heat treated in the temperature range of 120-160 degrees C with a nitrogen partial pressure of similar to 25 m Torr. This increase in quality factor as well as the Q-rise phenomenon (anti-Q-slope) is similar to those previously obtained with high temperature nitrogen doping as well as titanium doping. In this study, a cavity N-2-treated at 120 degrees C and at 140 degrees C showed no degradation in accelerating gradient, however the accelerating gradient was reduced by similar to 25% with a 160 degrees C N-2 treatment, compared to the baseline tests after electropolishing. Sample coupons treated in the same conditions as the cavity were analyzed by scanning electron microscope, x-ray photoelectron spectroscopy and secondary ion mass spectroscopy revealed a complex surface composition of Nb2O5, NbO and NbN(1-x)Ox within the rf penetration depth. Furthermore, magnetization measurements showed no significant change on bulk superconducting properties.