Exact Solution of a 2D Interacting Fermion Model

被引:5
作者
de Woul, Jonas [1 ]
Langmann, Edwin [1 ]
机构
[1] Royal Inst Technol KTH, Dept Theoret Phys, S-10691 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
COUPLED LUTTINGER LIQUIDS; ARBITRARY DIMENSION; FIELD THEORY; SURFACE; BOSONIZATION; RENORMALIZATION; BEHAVIOR; PARTICLE; SYSTEM; GAS;
D O I
10.1007/s00220-012-1518-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study an exactly solvable quantum field theory (QFT) model describing interacting fermions in 2+1 dimensions. This model is motivated by physical arguments suggesting that it provides an effective description of spinless fermions on a square lattice with local hopping and density-density interactions if, close to half filling, the system develops a partial energy gap. The necessary regularization of the QFT model is based on this proposed relation to lattice fermions. We use bosonization methods to diagonalize the Hamiltonian and to compute all correlation functions. We also discuss how, after appropriate multiplicative renormalizations, all short- and long distance cutoffs can be removed. In particular, we prove that the renormalized two-point functions have algebraic decay with non-trivial exponents depending on the interaction strengths, which is a hallmark of Luttinger-liquid behavior.
引用
收藏
页码:1 / 56
页数:56
相关论文
共 51 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS, V55
[2]   LUTTINGER-LIQUID BEHAVIOR OF THE NORMAL METALLIC STATE OF THE 2D HUBBARD-MODEL [J].
ANDERSON, PW .
PHYSICAL REVIEW LETTERS, 1990, 64 (15) :1839-1841
[3]   RENORMALIZATION-GROUP AND THE FERMI-SURFACE IN THE LUTTINGER MODEL [J].
BENFATTO, G ;
GALLAVOTTI, G ;
MASTROPIETRO, V .
PHYSICAL REVIEW B, 1992, 45 (10) :5468-5480
[4]   ONE-PARTICLE AND 2-PARTICLE INSTABILITY OF COUPLED LUTTINGER LIQUIDS [J].
BOIES, D ;
BOURBONNAIS, C ;
TREMBLAY, AMS .
PHYSICAL REVIEW LETTERS, 1995, 74 (06) :968-971
[5]   ON FERMION GAUGE GROUPS, CURRENT-ALGEBRAS AND KAC-MOODY ALGEBRAS [J].
CAREY, AL ;
RUIJSENAARS, SNM .
ACTA APPLICANDAE MATHEMATICAE, 1987, 10 (01) :1-86
[6]  
Carey AL, 2002, PROG MATH, V205, P45
[7]   A NOTE ON THE BOSON-FERMION CORRESPONDENCE AND INFINITE DIMENSIONAL GROUPS [J].
CAREY, AL ;
HURST, CA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 98 (04) :435-448
[8]   THE MASSLESS THIRRING MODEL - POSITIVITY OF KLAIBER N-POINT FUNCTIONS [J].
CAREY, AL ;
RUIJSENAARS, SNM ;
WRIGHT, JD .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 99 (03) :347-364
[9]   Partially Gapped Fermions in 2D [J].
de Woul, Jonas ;
Langmann, Edwin .
JOURNAL OF STATISTICAL PHYSICS, 2010, 139 (06) :1033-1065
[10]   Rigorous proof of Fermi liquid behavior for jellium two-dimensional interacting fermions [J].
Disertori, M ;
Rivasseau, V .
PHYSICAL REVIEW LETTERS, 2000, 85 (02) :361-364