Understanding the Potential of Zeolite Imidazolate Framework Membranes in Gas Separations Using Atomically Detailed Calculations

被引:40
作者
Atci, Erhan [1 ]
Keskin, Seda [1 ]
机构
[1] Koc Univ, Dept Chem & Biol Engn, TR-34450 Istanbul, Turkey
关键词
METAL-ORGANIC FRAMEWORKS; CARBON-DIOXIDE; MOLECULAR SIMULATIONS; ZIF-69; MEMBRANES; MASS-TRANSPORT; FORCE-FIELD; ADSORPTION; DIFFUSION; MIXTURES; CO2;
D O I
10.1021/jp305684d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Zeolite imidazolate frameworks (ZIFs) offer considerable potential for gas separation applications due to their tunable pore sizes, large surface areas, high pore volumes, and good thermal and mechanical stabilities. Although a significant number of ZIFs has been synthesized in the powder form to date, very little is currently known about the potential performance of ZIFs for membrane-based gas separation applications. In this work, we used atomically detailed calculations to predict the performance of 15 different ZIP materials both in adsorption-based and membrane-based separations of CH4/H-2, CO2/CH4, and CO2/H-2 mixtures. We predicted adsorption-based selectivity, working capacity, membrane-based selectivity, and gas permeability of ZIFs. Our results identified several ZIFs that can outperform traditional zeolite membranes and widely studied metal organic framework membranes in CH4/H-2, CO2/CH4, and CO2/H-2 separation processes. Finally, the accuracy of the mixing theories estimating mixture adsorption and diffusion based on single component data was tested.
引用
收藏
页码:15525 / 15537
页数:13
相关论文
共 73 条
  • [1] Diffusivities of Ar and Ne in carbon nanotubes
    Ackerman, DM
    Skoulidas, AI
    Sholl, DS
    Johnson, JK
    [J]. MOLECULAR SIMULATION, 2003, 29 (10-11) : 677 - 684
  • [2] Experimental and Computational Study of Functionality Impact on Sodalite-Zeolitic Imidazolate Frameworks for CO2 Separation
    Amrouche, Hedi
    Aguado, Sonia
    Perez-Pellitero, Javier
    Chizallet, Celine
    Siperstein, Flor
    Farrusseng, David
    Bats, Nicolas
    Nieto-Draghi, Carlos
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (33) : 16425 - 16432
  • [3] [Anonymous], 2010, ANGEW CHEM INT EDIT, DOI DOI 10.1002/ANGE.201001919
  • [4] Atomically Detailed Models for Transport of Gas Mixtures in ZIF Membranes and ZIF/Polymer Composite Membranes
    Atci, Erhan
    Keskin, Seda
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (07) : 3091 - 3100
  • [5] A High-Performance Gas-Separation Membrane Containing Submicrometer-Sized Metal-Organic Framework Crystals
    Bae, Tae-Hyun
    Lee, Jong Suk
    Qiu, Wulin
    Koros, William J.
    Jones, Christopher W.
    Nair, Sankar
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (51) : 9863 - 9866
  • [6] High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture
    Banerjee, Rahul
    Phan, Anh
    Wang, Bo
    Knobler, Carolyn
    Furukawa, Hiroyasu
    O'Keeffe, Michael
    Yaghi, Omar M.
    [J]. SCIENCE, 2008, 319 (5865) : 939 - 943
  • [7] Control of Pore Size and Functionality in Isoreticular Zeolitic Imidazolate Frameworks and their Carbon Dioxide Selective Capture Properties
    Banerjee, Rahul
    Furukawa, Hiroyasu
    Britt, David
    Knobler, Carolyn
    O'Keeffe, Michael
    Yaghi, Omar M.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (11) : 3875 - +
  • [8] Zeolitic imidazolate frameworks for separation of binary mixtures of CO2, CH4, N2 and H2: A computer simulation investigation
    Battisti, Anna
    Taioli, Simone
    Garberoglio, Giovanni
    [J]. MICROPOROUS AND MESOPOROUS MATERIALS, 2011, 143 (01) : 46 - 53
  • [9] A complete experimental approach for synthesis gas separation studies using static gravimetric and column breakthrough experiments
    Belmabkhout, Youssef
    Pirngruber, Gerhard
    Jolimaitre, Elsa
    Methivier, Alain
    [J]. ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY, 2007, 13 (3-4): : 341 - 349
  • [10] PATH-INTEGRAL SIMULATIONS OF MIXED PARA-D-2 AND ORTHO-D-2 CLUSTERS - THE ORIENTATIONAL EFFECTS
    BUCH, V
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (10) : 7610 - 7629