A local minimum theorem and critical nonlinearities

被引:6
作者
Bonanno, G. [1 ]
D'Agui, G. [1 ]
O'Regan, D. [2 ]
机构
[1] Univ Messina, Dept Engn, I-98166 Messina, Italy
[2] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland
来源
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA | 2016年 / 24卷 / 02期
关键词
Critical growth; nonlinear differential problem; variational methods; Palais-Smale condition; local minimum; VARIATIONAL PRINCIPLE; ELLIPTIC PROBLEMS; FUNCTIONALS;
D O I
10.1515/auom-2016-0028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the existence of two positive solutions for a Dirichlet problem having a critical growth, and depending on a real parameter, is established. The approach is based on methods which are totally variational, unlike the fundamental result of Ambrosetti, Brezis and Cerami where a clever combination of topological and variational methods is used in order to obtain the same conclusion. In addition, a numerical estimate of real parameters, for which the two solutions are obtained, is provided. Our main tool is a local minimum theorem.
引用
收藏
页码:67 / 86
页数:20
相关论文
共 14 条
[1]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[2]  
[Anonymous], 1996, VARIATIONAL METHODS, DOI DOI 10.1007/978-3-662-03212-1
[3]  
[Anonymous], 1997, Minimax theorems
[4]   Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities [J].
Bonanno, Gabriele ;
Candito, Pasquale .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (12) :3031-3059
[5]   A variational approach to multiplicity results for boundary-value problems on the real line [J].
Bonanno, Gabriele ;
Barletta, Giuseppina ;
O'Regan, Donal .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2015, 145 (01) :13-29
[6]  
Bonanno G, 2013, DYNAM SYST APPL, V22, P411
[7]   Relations between the mountain pass theorem and local minima [J].
Bonanno, Gabriele .
ADVANCES IN NONLINEAR ANALYSIS, 2012, 1 (03) :205-220
[8]   A critical point theorem via the Ekeland variational principle [J].
Bonanno, Gabriele .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (05) :2992-3007
[9]   A critical point theorem and existence results for a nonlinear boundary value problem [J].
Bonanno, Gabriele ;
D'Agui, Giuseppina .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (3-4) :1977-1982
[10]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477