CO2 - intrinsic product, essential substrate, and regulatory trigger of microbial and mammalian production processes

被引:44
作者
Blombach, Bastian [1 ]
Takors, Ralf [1 ]
机构
[1] Univ Stuttgart, Inst Biochem Engn, Allmandring 31, D-70569 Stuttgart, Germany
关键词
bicarbonate; carbon dioxide; production process; regulation; carboxylation; decarboxylation; DISSOLVED CARBON-DIOXIDE; SOLUBLE ADENYLYL-CYCLASE; CORYNEBACTERIUM-GLUTAMICUM; SACCHAROMYCES-CEREVISIAE; ESCHERICHIA-COLI; ELEVATED PCO(2); PHOSPHOENOLPYRUVATE CARBOXYLASE; YEAST GROWTH; TRANSCRIPTIONAL RESPONSES; NUTRIENT CONSUMPTION;
D O I
10.3389/fbioe.2015.00108
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Carbon dioxide formation mirrors the final carbon oxidation steps of aerobic metabolism in microbial and mammalian cells. As a consequence, CO2/HCO3- dissociation equilibria arise in fermenters by the growing culture. Anaplerotic reactions make use of the abundant CO2/HCO3- levels for refueling citric acid cycle demands and for enabling oxaloacetate-derived products. At the same time, CO2 is released manifold in metabolic reactions via decarboxylation activity. The levels of extracellular CO2/HCO3- depend on cellular activities and physical constraints such as hydrostatic pressures, aeration, and the efficiency of mixing in large-scale bioreactors. Besides, local CO2/HCO3- levels might also act as metabolic inhibitors or transcriptional effectors triggering regulatory events inside the cells. This review gives an overview about fundamental physicochemical properties of CO2/HCO3- in microbial and mammalian cultures effecting cellular physiology, production processes, metabolic activity, and transcriptional regulation.
引用
收藏
页数:11
相关论文
共 112 条
[1]   Bicarbonate Induces Vibrio cholerae Virulence Gene Expression by Enhancing ToxT Activity [J].
Abuaita, Basel H. ;
Withey, Jeffrey H. .
INFECTION AND IMMUNITY, 2009, 77 (09) :4111-4120
[2]   Physiological and genome-wide transcriptional responses of Saccharomyees cerevisiae to high carbon dioxide concentrations [J].
Aguilera, J ;
Petit, T ;
de Winde, JH ;
Pronk, JT .
FEMS YEAST RESEARCH, 2005, 5 (6-7) :579-593
[3]   Decoupling cell growth and product formation in Chinese hamster ovary cells through metabolic control [J].
Altamirano, C ;
Cairó, JJ ;
Gòdia, F .
BIOTECHNOLOGY AND BIOENGINEERING, 2001, 76 (04) :351-360
[4]  
Altman P.L., 1971, BIOL HDB RESP CIRCUL
[5]   Carbon dioxide transport [J].
Arthurs, G. J. ;
Sudhakar, M. .
BJA EDUCATION, 2005, 5 (06) :207-210
[6]   Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde [J].
Atsumi, Shota ;
Higashide, Wendy ;
Liao, James C. .
NATURE BIOTECHNOLOGY, 2009, 27 (12) :1177-U142
[7]   CO2 concentrating mechanisms in cyanobacteria:: molecular components, their diversity and evolution [J].
Badger, MR ;
Price, GD .
JOURNAL OF EXPERIMENTAL BOTANY, 2003, 54 (383) :609-622
[8]   Effect of elevated dissolved carbon dioxide concentrations on growth of Corynebacterium glutamicum on D-glucose and L-lactate [J].
Baeumchen, Carsten ;
Knoll, Arnd ;
Husemann, Bernward ;
Seletzky, Juri ;
Maier, Bernd ;
Dietrich, Carsten ;
Amoabediny, Ghassem ;
Buechs, Jochen .
JOURNAL OF BIOTECHNOLOGY, 2007, 128 (04) :868-874
[9]   Metabolic and Transcriptional Response of Recombinant Escherichia coli to Elevated Dissolved Carbon Dioxide Concentrations [J].
Baez, Antonino ;
Flores, Noemi ;
Bolivar, Francisco ;
Ramirez, Octavio T. .
BIOTECHNOLOGY AND BIOENGINEERING, 2009, 104 (01) :102-110
[10]   CO2 sensing in fungi and beyond [J].
Bahn, Yong-Sun ;
Muhlschlegel, Fritz A. .
CURRENT OPINION IN MICROBIOLOGY, 2006, 9 (06) :572-578