Stable isotope resolved metabolomics classification of prostate cancer cells using hyperpolarized NMR data

被引:13
作者
Frahm, Anne Birk [1 ]
Jensen, Pernille Rose [1 ]
Ardenkjaer-Larsen, Jan Henrik [1 ]
Yigit, Demet [1 ]
Lerche, Mathilde Hauge [1 ]
机构
[1] Ctr Hyperpolarizat Magnet Resonance, Dept Hlth Technol, Orsteds Plads 349, DK-2800 Lyngby, Denmark
基金
新加坡国家研究基金会;
关键词
Dissolution dynamic nuclear polarization; Stable isotope resolved metabolomics; Random forest; Support vector machine; Nuclear magnetic resonance; MASS-SPECTROMETRY; METABOLISM;
D O I
10.1016/j.jmr.2020.106750
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Metabolic fingerprinting is a strong tool for characterization of biological phenotypes. Classification with machine learning is a critical component in the discrimination of molecular determinants. Cellular activity can be traced using stable isotope labelling of metabolites from which information on cellular pathways may be obtained. Nuclear magnetic resonance (NMR) spectroscopy is, due to its ability to trace labelling in specific atom positions, a method of choice for such metabolic activity measurements. In this study, we used hyperpolarization in the form of dissolution Dynamic Nuclear Polarization (dDNP) NMR to measure signal enhanced isotope labelled metabolites reporting on pathway activity from four different prostate cancer cell lines. The spectra have a high signal-to-noise, with less than 30 signals reporting on 10 metabolic reactions. This allows easy extraction and straightforward interpretation of spectral data. Four metabolite signals selected using a Random Forest algorithm allowed a classification with Support Vector Machines between aggressive and indolent cancer cells with 96.9% accuracy, - corresponding to 31 out of 32 samples. This demonstrates that the information contained in the few features measured with dDNP NMR, is sufficient and robust for performing binary classification based on the metabolic activity of cultured prostate cancer cells. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:5
相关论文
共 35 条
  • [1] [Anonymous], MNOVA VER 11 0
  • [2] Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR
    Ardenkjaer-Larsen, JH
    Fridlund, B
    Gram, A
    Hansson, G
    Hansson, L
    Lerche, MH
    Servin, R
    Thaning, M
    Golman, K
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (18) : 10158 - 10163
  • [3] Bioinformatics tools for cancer metabolomics
    Blekherman, Grigoriy
    Laubenbacher, Reinhard
    Cortes, Diego F.
    Mendes, Pedro
    Torti, Frank M.
    Akman, Steven
    Torti, Suzy V.
    Shulaev, Vladimir
    [J]. METABOLOMICS, 2011, 7 (03) : 329 - 343
  • [4] The Role of Lactate Metabolism in Prostate Cancer Progression and Metastases Revealed by Dual-Agent Hyperpolarized 13C MRSI
    Bok, Robert
    Lee, Jessie
    Sriram, Renuka
    Keshari, Kayvan
    Sukumar, Subramaniam
    Daneshmandi, Saeed
    Korenchan, David E.
    Flavell, Robert R.
    Vigneron, Daniel B.
    Kurhanewicz, John
    Seth, Pankaj
    [J]. CANCERS, 2019, 11 (02)
  • [5] Highly Repeatable Dissolution Dynamic Nuclear Polarization for Heteronuclear NMR Metabolomics
    Bornet, Aurelien
    Maucourt, Mickael
    Deborde, Catherine
    Jacob, Daniel
    Milani, Jonas
    Vuichaud, Basile
    Ji, Xiao
    Dumez, Jean-Nicolas
    Moing, Annick
    Bodenhausen, Geoffrey
    Jannin, Sami
    Giraudeau, Patrick
    [J]. ANALYTICAL CHEMISTRY, 2016, 88 (12) : 6179 - 6183
  • [6] Partial least squares discriminant analysis: taking the magic away
    Brereton, Richard G.
    Lloyd, Gavin R.
    [J]. JOURNAL OF CHEMOMETRICS, 2014, 28 (04) : 213 - 225
  • [7] Assessing Prostate Cancer Aggressiveness with Hyperpolarized Dual-Agent 3D Dynamic Imaging of Metabolism and Perfusion
    Chen, Hsin-Yu
    Larson, Peder E. Z.
    Bok, Robert A.
    von Morze, Cornelius
    Sriram, Renuka
    Delos Santos, Romelyn
    Delos Santos, Justin
    Gordon, Jeremy W.
    Bahrami, Naeim
    Ferrone, Marcus
    Kurhanewicz, John
    Vigneron, Daniel B.
    [J]. CANCER RESEARCH, 2017, 77 (12) : 3207 - 3216
  • [8] Cunningham D., 2015, J BIOL METHODS, V2, pe17, DOI 10.14440/jbm.2015.63
  • [9] PKM2, cancer metabolism, and the road ahead
    Dayton, Talya L.
    Jacks, Tyler
    Vander Heiden, Matthew G.
    [J]. EMBO REPORTS, 2016, 17 (12) : 1721 - 1730
  • [10] The Metabolic Phenotype of Prostate Cancer
    Eidelman, Eric
    Twum-Ampofo, Jeffrey
    Ansari, Jamal
    Siddiqui, Mohummad Minhaj
    [J]. FRONTIERS IN ONCOLOGY, 2017, 7