New MDS or near-MDS self-dual codes

被引:57
作者
Gulliver, T. Aaron [1 ]
Kim, Jon-Lark [2 ]
Lee, Yoonjin [3 ]
机构
[1] Univ Victoria, Dept Elect & Comp Engn, STN CSC, Victoria, BC V8W 3P6, Canada
[2] Univ Louisville, Dept Math, Louisville, KY 40292 USA
[3] Ewha Womans Univ, Dept Math, Seoul 120750, South Korea
关键词
multiple description source (MDS) codes; Reed-Solomon (RS) codes; self-dual codes;
D O I
10.1109/TIT.2008.928297
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We construct new MDS or near-MDS self-dual codes over large finite fields. In particular, we show that there exists a Euclidean self-dual MDS code of length n = q over GF(q) whenever q = 2(m) (m >= 2) using a Reed-Solomon (RS) code and its extension. It turns out that this multiple description source (MDS) self-dual code is an extended duadic code. We construct Euclidean self-dual near-MDS codes of length n = q-1 over GF(q) from RS codes when q equivalent to 1 (mod 4) and q <= 113. We also construct many new MDS self-dual codes over GF(p) of length 16 for primes 29 <= p <= 113. Finally, we construct Euclidean/Hermitian self-dual MDS codes of lengths up to 14 over GF(q(2)) where q = 19,23,25,27,29.
引用
收藏
页码:4354 / 4360
页数:7
相关论文
共 16 条
[1]  
Artin E., 1957, GEOMETRIC ALGEBRA, DOI 10.1002/9781118164518
[2]  
Baicheva T., 2004, MATH BALKANICA NEW S, V18, P67
[3]   On self-dual codes over some prime fields [J].
Betsumiya, K ;
Georgiou, S ;
Gullivere, TA ;
Harada, M ;
Koukouvinos, C .
DISCRETE MATHEMATICS, 2003, 262 (1-3) :37-58
[4]  
BOER MAD, 1996, DESIGN CODE CRYPTOGR, V9, P143
[5]  
Cannon J., 1994, INTRO MAGMA
[6]  
Dodunekov S., 1995, J. Geom., V54, P30, DOI DOI 10.1007/BF01222850
[7]   MDS self-dual codes over large prime fields [J].
Georgiou, S ;
Koukouvinos, C .
FINITE FIELDS AND THEIR APPLICATIONS, 2002, 8 (04) :455-470
[8]   THE NONCLASSICAL 10-ARC OF PG(4,9) [J].
GLYNN, DG .
DISCRETE MATHEMATICS, 1986, 59 (1-2) :43-51
[9]  
Grassl M., Code Tables: Bounds on the parameters of various types of codes
[10]  
Harada M, 2006, AUSTRALAS J COMB, V35, P57