Fractional Chebyshev pseudospectral method for fractional optimal control problems

被引:10
作者
Habibli, M. [1 ]
Skandari, M. H. Noori [1 ]
机构
[1] Shahrood Univ Technol, Fac Math Sci, Shahrood 3619995161, Iran
关键词
Chebyshev pseudospectral method; fractional Lagrange polynomial; fractional optimal control; optimality conditions; COSTATE ESTIMATION; SYSTEMS;
D O I
10.1002/oca.2495
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we introduce and apply a fractional pseudospectral method for indirectly solving a generic form of fractional optimal control problems. By employing the fractional Lagrange interpolating functions and discretizing the necessary optimality conditions at Chebyshev-Gauss-Lobatto points, the problem is converted into an algebraic system. By solving this system, the optimal solution of the main fractional optimal control problem is approximated. Finally, in some numerical examples, we show the applicability, efficiency, and accuracy of the proposed method comparing with some other methods.
引用
收藏
页码:558 / 572
页数:15
相关论文
共 34 条
[1]   A Hamiltonian formulation and a direct numerical scheme for Fractional Optimal Control Problems [J].
Agrawal, Om P. ;
Baleanu, Dumitru .
JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (9-10) :1269-1281
[2]   A quadratic numerical scheme for fractional optimal control problems [J].
Agrawal, Om P. .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2008, 130 (01) :0110101-0110106
[3]  
AGRAWAL OP, 2001, NONLINEAR DYNAM, V38, P323
[4]   An iterative approach for solving fractional optimal control problems [J].
Alizadeh, Ali ;
Effati, Sohrab .
JOURNAL OF VIBRATION AND CONTROL, 2018, 24 (01) :18-36
[5]  
[Anonymous], 2011, Spectral Methods, DOI [DOI 10.1007/978, DOI 10.1007/978-3-540-71041-7, 10.1007/978-3-540-71041-7]
[6]   Solving Nonlinear Fractional Differential Equation by Generalized Mittag-Leffler Function Method [J].
Arafa, A. A. M. ;
Rida, S. Z. ;
Mohammadein, A. A. ;
Ali, H. M. .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2013, 59 (06) :661-663
[7]  
Axtell M, 1990, P IEEE 1990 NAT AER
[8]   FRACTIONAL ORDER STATE-EQUATIONS FOR THE CONTROL OF VISCOELASTICALLY DAMPED STRUCTURES [J].
BAGLEY, RL ;
CALICO, RA .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1991, 14 (02) :304-311
[9]   Direct trajectory optimization and costate estimation via an orthogonal collocation method [J].
Benson, David A. ;
Huntington, Geoffrey T. ;
Thorvaldsen, Tom P. ;
Rao, Anil V. .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2006, 29 (06) :1435-1440
[10]   A new Jacobi operational matrix: An application for solving fractional differential equations [J].
Doha, E. H. ;
Bhrawy, A. H. ;
Ezz-Eldien, S. S. .
APPLIED MATHEMATICAL MODELLING, 2012, 36 (10) :4931-4943