Domain Adaptation for Person Re-identification on New Unlabeled Data

被引:3
|
作者
Pereira, Tiago de C. G. [1 ]
de Campos, Teofilo E. [1 ]
机构
[1] Univ Brasilia UnB, Dept Ciencia Comp, Brasilia, DF, Brazil
来源
VISAPP: PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 4: VISAPP | 2020年
关键词
Domain Adaptation; Person Re-identification; Deep Learning;
D O I
10.5220/0008973606950703
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In the world where big data reigns and there is plenty of hardware prepared to gather a huge amount of non structured data, data acquisition is no longer a problem. Surveillance cameras are ubiquitous and they capture huge numbers of people walking across different scenes. However, extracting value from this data is challenging, specially for tasks that involve human images, such as face recognition and person re-identification. Annotation of this kind of data is a challenging and expensive task. In this work we propose a domain adaptation workflow to allow CNNs that were trained from one domain to be applied to another domain without the need for new annotation of the target data. Our results show that domain adaptation techniques really improve the performance of the CNN when applied in the target domain.
引用
收藏
页码:695 / 703
页数:9
相关论文
共 50 条
  • [1] Progressive Domain Adaptation for Robot Vision Person Re-identification
    Sha, Zijun
    Zeng, Zelong
    Wang, Zheng
    Natori, Yoichi
    Taniguchi, Yasuhiro
    Satoh, Shin'ichi
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 4488 - 4490
  • [2] Unsupervised adversarial domain adaptation with similarity diffusion for person re-identification
    Tang, Geyu
    Gao, Xingyu
    Chen, Zhenyu
    Zhong, Huicai
    NEUROCOMPUTING, 2021, 442 (442) : 337 - 347
  • [3] Noise Resistible Network for Unsupervised Domain Adaptation on Person Re-Identification
    Zhang, Suian
    Zeng, Ying
    Hu, Haifeng
    Liu, Shuyu
    IEEE ACCESS, 2021, 9 : 60740 - 60752
  • [4] Collaborative learning mutual network for domain adaptation in person re-identification
    Tay, Chiat-Pin
    Yap, Kim-Hui
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (14) : 12211 - 12222
  • [5] Domain adaptation with structural knowledge transfer learning for person re-identification
    Liu, Haojie
    Guo, Fang
    Xia, Daoxun
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (19) : 29321 - 29337
  • [6] Domain adaptation with structural knowledge transfer learning for person re-identification
    Haojie Liu
    Fang Guo
    Daoxun Xia
    Multimedia Tools and Applications, 2021, 80 : 29321 - 29337
  • [7] Unsupervised domain adaptation for person re-identification with iterative soft clustering
    Ainam, Jean-Paul
    Qin, Ke
    Owusu, Jim Wilson
    Lu, Guoming
    KNOWLEDGE-BASED SYSTEMS, 2021, 212
  • [8] Collaborative learning mutual network for domain adaptation in person re-identification
    Chiat-Pin Tay
    Kim-Hui Yap
    Neural Computing and Applications, 2022, 34 : 12211 - 12222
  • [9] Domain Adaptation for Person Re-Identification with Part Alignment and Progressive Pseudo-Labeling
    Pereira, Tiago de C. G.
    de Campos, Teofilo E.
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (16)
  • [10] UNSUPERVISED DOMAIN ADAPTATION THROUGH SYNTHESIS FOR PERSON RE-IDENTIFICATION
    Xiang, Suncheng
    Fu, Yuzhuo
    You, Guanjie
    Liu, Ting
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,