Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets

被引:574
|
作者
Kitipornchai, Sritawat [1 ]
Chen, Da [1 ]
Yang, Jie [2 ]
机构
[1] Univ Queensland, Sch Civil Engn, St Lucia, Qld 4072, Australia
[2] RMIT Univ, Sch Engn, POB 71, Bundoora, Vic 3083, Australia
基金
澳大利亚研究理事会;
关键词
Functionally graded porous materials; Graphene platelet; Free vibration; elastic buckling; Timoshenko beam theory; MECHANICAL-PROPERTIES; NONLINEAR VIBRATION; CARBON NANOTUBES; COMPOSITE BEAMS; ALUMINUM FOAMS; SANDWICH BEAM; METAL FOAMS; ALLOY FOAMS; NANOCOMPOSITES; NANOPLATELETS;
D O I
10.1016/j.matdes.2016.12.061
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper studies free vibration and elastic buckling of functionally graded porous nanocomposite beams where the internal pores and graphene platelets (GPLs) are layer-wise distributed in the matrix either uniformly or non-uniformly according to three different patterns. A multilayer beam model is proposed with material parameters varying across layers to achieve graded distributions in both porosity and nanofillers. Mechanical properties of closed-cell cellular solids under Gaussian Random Field scheme are used to determine the variation of Poisson's ratio and the relationship between porosity coefficients and mass density. The elastic modulus of the nanocomposite is obtained by using Halpin-Tsai micromechanics model. Theoretical formulations are based on Timoshenko beam theory and Ritz method is employed to obtain the dimensionless fundamental natural frequency and critical buckling load of porous nanocomposite beams. A comprehensive parametric study is carried out, with a particular focus on the effects of weight fraction, distribution pattern, geometry and size of GPL reinforcements on the free vibration and buckling behaviors of the nanocomposite beam with different metal matrixes and porosity coefficients. The results indicate that the effective stiffness of the porous nanocomposite beam can be best improved when both porosity distribution and GPL dispersion pattern are non-uniform but symmetric. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:656 / 665
页数:10
相关论文
共 50 条
  • [31] Free vibration and buckling analysis of polymeric composite beams reinforced by functionally graded bamboo fibers
    Feizabad, H. M.
    Yas, M. H.
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2024, 45 (03) : 543 - 562
  • [32] Free Vibration Analysis of Composite Sandwich Beams Reinforced by Functionally Graded Graphene Nanoplatelets
    Kheirikhah, M. M.
    Ghiasvand, M.
    Gohari, S.
    Burvill, C.
    MECHANICS OF COMPOSITE MATERIALS, 2023, 59 (05) : 959 - 976
  • [33] Torsional buckling analyses of functionally graded porous nanocomposite cylindrical shells reinforced with graphene platelets (GPLs)
    Shahgholian-Ghahfarokhi, Davoud
    Safarpour, Mehran
    Rahimi, Alireza
    MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES, 2021, 49 (01) : 81 - 102
  • [34] Torsional buckling of graphene platelets (GPLs) reinforced functionally graded cylindrical shell with cutout
    Wang, Yu
    Feng, Chuang
    Zhao, Zhan
    Lu, Fangzhou
    Yang, Jie
    COMPOSITE STRUCTURES, 2018, 197 : 72 - 79
  • [36] Nonlinear vibration and buckling of functionally graded porous nanoscaled beams
    Seyed Sajad Mirjavadi
    Behzad Mohasel Afshari
    Mohammad Khezel
    Navvab Shafiei
    Samira Rabby
    Morteza Kordnejad
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40
  • [37] Nonlinear vibration and buckling of functionally graded porous nanoscaled beams
    Mirjavadi, Seyed Sajad
    Afshari, Behzad Mohasel
    Khezel, Mohammad
    Shafiei, Navvab
    Rabby, Samira
    Kordnejad, Morteza
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2018, 40 (07)
  • [38] Vibration and Buckling Characteristics of Functionally Graded Graphene Nanoplatelets Reinforced Composite Beams with Open Edge Cracks
    Tam, Meifung
    Yang, Zhicheng
    Zhao, Shaoyu
    Yang, Jie
    MATERIALS, 2019, 12 (09)
  • [39] Free vibration and buckling analysis of functionally graded beams using the DMCDM
    Jiao, Zeyu
    Wang, Guannan
    Xu, Rongqiao
    Chen, Weiqiu
    Reddy, J. N.
    COMPOSITE STRUCTURES, 2024, 332
  • [40] Effect of Thickness Stretching on Bending, Buckling, and Free Vibration of Functionally Graded Porous Beams
    Wang, Zhuangzhuang
    Ma, Liansheng
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2024,