Object-Detecting Neurons in Drosophila

被引:72
作者
Keles, Mehmet F. [1 ]
Frye, Mark A. [1 ]
机构
[1] Univ Calif Los Angeles, Dept Integrat Biol & Physiol, Los Angeles, CA 90095 USA
关键词
INSECT VISUAL-SYSTEM; MOTION VISION; OPTIC GLOMERULI; PATHWAYS; MELANOGASTER; INTERNEURONS; DISSECTION; TRACKING; ELEMENTS; CIRCUIT;
D O I
10.1016/j.cub.2017.01.012
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Many animals rely on vision to detect objects such as conspecifics, predators, and prey. Hypercomplex cells found in feline cortex and small target motion detectors found in dragonfly and hoverfly optic lobes demonstrate robust tuning for small objects, with weak or no response to larger objects or movement of the visual panorama [1-3]. However, the relationship among anatomical, molecular, and functional properties of object detection circuitry is not understood. Here we characterize a specialized object detector in Drosophila, the lobula columnar neuron LC11 [4]. By imaging calcium dynamics with two photon excitation microscopy, we show that LC11 responds to the omni-directional movement of a small object darker than the background, with little or no responses to static flicker, vertically elongated bars, or panoramic gratings. LC11 dendrites innervate multiple layers of the lobula, and each dendrite spans enough columns to sample 75 degrees of visual space, yet the area that evokes calcium responses is only 20 degrees wide and shows robust responses to a 2.2 degrees object spanning less than half of one facet of the compound eye. The dendrites of neighboring LC11s encode object motion retinotopically, but the axon terminals fuse into a glomerular structure in the central brain where retinotopy is lost. Blocking inhibitory ionic currents abolishes small object sensitivity and facilitates responses to elongated bars and gratings. Our results reveal high-acuity object motion detection in the Drosophila optic lobe.
引用
收藏
页码:680 / 687
页数:8
相关论文
共 40 条
  • [1] The relative roles of vision and chemosensation in mate recognition of Drosophila melanogaster
    Agrawal, Sweta
    Safarik, Steve
    Dickinson, Michael
    [J]. JOURNAL OF EXPERIMENTAL BIOLOGY, 2014, 217 (15) : 2796 - 2805
  • [2] Functional Specialization of Neural Input Elements to the Drosophila ON Motion Detector
    Ammer, Georg
    Leonhardt, Aljoscha
    Bahl, Armin
    Dickson, Barry J.
    Borst, Alexander
    [J]. CURRENT BIOLOGY, 2015, 25 (17) : 2247 - 2253
  • [3] [Anonymous], 1984, Studies of Brain Function
  • [4] [Anonymous], 1976, ATLAS INSECT BRAIN, DOI DOI 10.1007/978-3-642-66179-2
  • [5] Neurons Forming Optic Glomeruli Compute Figure-Ground Discriminations in Drosophila
    Aptekar, Jacob W.
    Keles, Mehmet F.
    Lu, Patrick M.
    Zolotova, Nadezhda M.
    Frye, Mark A.
    [J]. JOURNAL OF NEUROSCIENCE, 2015, 35 (19) : 7587 - 7599
  • [6] Figure Tracking by Flies Is Supported by Parallel Visual Streams
    Aptekar, Jacob W.
    Shoemaker, Patrick A.
    Fryel, Mark A.
    [J]. CURRENT BIOLOGY, 2012, 22 (06) : 482 - 487
  • [7] Neural Mechanisms for Drosophila Contrast Vision
    Bahl, Armin
    Serbe, Etienne
    Meier, Matthias
    Ammer, Georg
    Borst, Alexander
    [J]. NEURON, 2015, 88 (06) : 1240 - 1252
  • [8] Object tracking in motion-blind flies
    Bahl, Armin
    Ammer, Georg
    Schilling, Tabea
    Borst, Alexander
    [J]. NATURE NEUROSCIENCE, 2013, 16 (06) : 730 - +
  • [9] Retinotopic organization of small-field-target-detecting neurons in the insect visual system
    Barnett, Paul D.
    Nordstrom, Karin
    O'Carroll, David C.
    [J]. CURRENT BIOLOGY, 2007, 17 (07) : 569 - 578
  • [10] Processing properties of ON and OFF pathways for Drosophila motion detection
    Behnia, Rudy
    Clark, Damon A.
    Carter, Adam G.
    Clandinin, Thomas R.
    Desplan, Claude
    [J]. NATURE, 2014, 512 (7515) : 427 - U443