Destruction behavior of carbon hybridized Li2MnSiO4 and Li2FeSiO4 nanoparticles for cathode materials

被引:17
作者
Sasaki, Hirokazu [1 ]
Nemoto, Atsushi [1 ]
Moriya, Maki [1 ]
Miyahara, Masahiko [1 ]
Hokazono, Mana [1 ]
Katayama, Shingo [1 ]
Akimoto, Yuji [1 ]
Nakajima, Akira [2 ]
Hirano, Shin-ichi [3 ]
机构
[1] Shoei Chem Inc, Shinjuku Ku, Tokyo 1630443, Japan
[2] Tokyo Inst Technol, Grad Sch Sci & Engn, Dept Met & Ceram Sci, Meguro Ku, Tokyo 1528552, Japan
[3] Shanghai Jiao Tong Univ, Hirano Inst Mat Innovat, Shanghai 200240, Peoples R China
关键词
Silicate; Batteries; Cathode material; Lithium ion battery; PERFORMANCE; EDGE; IRON;
D O I
10.1016/j.ceramint.2015.03.139
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Carbon-hybridized Li2MSiO4 (M=Mn, Fe) nanoparticles were synthesized using the spray pyrolysis method subsequent to grinding and heat treatment. The carbon-hybridized Li2MnSiO4 particles exhibited excellent cycle performance up to 1.21 Li/formula-unit delithiation(charged)/lithiation(discharged) cycles. However, the discharge capacity decreased rapidly under high delithiation/lithiation conditions of more than 1.25 Li/formula-unit, although Li2FeSiO4 has better cycle stability under delithiation/lithiation of 1.5 Li/formula-unit. The local structure differences examined using XANES between Li2MnSiO4 and Li2FeSiO4 revealed that the coordination polyhedral for Mn ion changed from tetrahedron to octahedron by cycling, while that of Fe ion was maintained as a tetrahedron. Results suggest that the coordination preference of Mn ion in the structure governs the cycle performance. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
引用
收藏
页码:S680 / S685
页数:6
相关论文
共 21 条
[1]  
Companion A.L., 1964, J. Chem. Educ, V41, P257, DOI [10.1021/ed041p257, DOI 10.1021/ED041P257]
[2]   Characterization of Li2MnSiO4 and Li2eSiO4 cathode materials synthesized via a citric acid assisted sol-gel method [J].
Deng, C. ;
Zhang, S. ;
Fu, B. L. ;
Yang, S. Y. ;
Ma, L. .
MATERIALS CHEMISTRY AND PHYSICS, 2010, 120 (01) :14-17
[3]   Effect of Mn substitution on the structural, morphological and electrochemical behaviors of Li2Fe1-xMnxSiO4 synthesized via citric acid assisted sol-gel method [J].
Deng, C. ;
Zhang, S. ;
Yang, S. Y. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 487 (1-2) :L18-L23
[4]   Li2MSiO4 (M = Fe and/or Mn) cathode materials [J].
Dominko, R. .
JOURNAL OF POWER SOURCES, 2008, 184 (02) :462-468
[5]   Li2MnSiO4 as a potential Li-battery cathode material [J].
Dominko, R. ;
Bele, M. ;
Kokalj, A. ;
Gaberscek, M. ;
Jamnik, J. .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :457-461
[6]   Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials [J].
Dominko, R ;
Bele, M ;
Gaberscek, M ;
Meden, A ;
Remskar, M ;
Jamnik, J .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (02) :217-222
[7]   Insights into Changes in Voltage and Structure of Li2FeSiO4 Polymorphs for Lithium-Ion Batteries [J].
Eames, C. ;
Armstrong, A. R. ;
Bruce, P. G. ;
Islam, M. S. .
CHEMISTRY OF MATERIALS, 2012, 24 (11) :2155-2161
[8]   Improved Performance of Li2FeSiO4/C Composite with Highly Rough Mesoporous Morphology [J].
Fu, Rusheng ;
Li, Yunsong ;
Yang, Hong ;
Zhang, Ying ;
Cheng, Xuan .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (05) :A3048-A3053
[9]   High-resolution XANES spectra of iron in minerals and glasses: structural information from the pre-edge region [J].
Galoisy, L ;
Calas, G ;
Arrio, MA .
CHEMICAL GEOLOGY, 2001, 174 (1-3) :307-319
[10]   Beyond one-electron reaction in Li cathode materials:: Designing Li2MnxFe1-xSiO4 [J].
Kokalj, Anton ;
Dominko, Robert ;
Mali, Gregor ;
Meden, Anton ;
Gaberscek, Miran ;
Jamnik, Janez .
CHEMISTRY OF MATERIALS, 2007, 19 (15) :3633-3640