Hyperbolic forms associated with cyclic weighted shift matrices

被引:9
作者
Chien, Mao-Ting [1 ]
Nakazato, Hiroshi [2 ]
机构
[1] Soochow Univ, Dept Math, Taipei 11102, Taiwan
[2] Hirosaki Univ, Fac Sci & Technol, Dept Math Sci, Hirosaki, Aomori 0368561, Japan
关键词
Hyperbolic form; Cyclic weighted shift matrix; Reducibility; Numerical range; RANK NUMERICAL RANGES; POLYNOMIALS; OPERATORS; RADIUS;
D O I
10.1016/j.laa.2013.09.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The singular points of the curve of a hyperbolic form associated with a cyclic weighted shift matrix are examined. It is shown that the singular points of such a curve are real nodes. Some results related the numerical ranges of cyclic weighted shift matrices are presented. In particular, the existence of flat portions on the boundary of the numerical range depends on the reducibility of the hyperbolic form. Further, an algebraic method is provided for the decomposition of reducible form which leads to a criterion for the periodicity of the weights. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:3541 / 3554
页数:14
相关论文
共 19 条
[1]   LACUNAS FOR HYPERBOLIC DIFFERENTIAL OPERATORS WITH CONSTANT COEFFICIENTS .1. [J].
ATIYAH, MF ;
BOTT, R ;
GARDING, L .
ACTA MATHEMATICA UPPSALA, 1970, 124 (1-2) :109-&
[2]  
Chien MT, 2012, ELECTRON J LINEAR AL, V23, P755
[3]   The boundary of higher rank numerical ranges [J].
Chien, Mao-Ting ;
Nakazato, Hiroshi .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (11) :2971-2985
[4]  
Chien MT, 2009, ELECTRON J LINEAR AL, V18, P58
[5]   CIRCULARITY OF THE NUMERICAL RANGE [J].
CHIEN, MT ;
TAM, BS .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 201 :113-133
[6]  
CHIEN MT, 1998, LINEAR MULTILINEAR A, V43, P363
[7]   Quantum error correcting codes from the compression formalism [J].
Choi, Man-Duen ;
Kribs, David W. ;
Zyczkowski, Karol .
REPORTS ON MATHEMATICAL PHYSICS, 2006, 58 (01) :77-91
[8]   Higher-rank numerical ranges and Kippenhahn polynomials [J].
Gau, Hwa-Long ;
Wu, Pei Yuan .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (07) :3054-3061
[9]   Weighted shift matrices: Unitary equivalence, reducibility and numerical ranges [J].
Gau, Hwa-Long ;
Tsai, Ming-Cheng ;
Wang, Han-Chun .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (01) :498-513
[10]   THE NUMERICAL RADIUS OF A NILPOTENT OPERATOR ON A HILBERT-SPACE [J].
HAAGERUP, U ;
DELAHARPE, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 115 (02) :371-379