Weld Feature Extraction Based on Fully Convolutional Networks

被引:22
|
作者
Zhang Yongshuai [1 ]
Yang Guowei [1 ]
Wang Qiqi [1 ]
Ma Lei [1 ]
Wang Yizhong [1 ]
机构
[1] Tianjin Univ Sci & Technol, Coll Elect Informat & Automat, Tianjin 300222, Peoples R China
来源
CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG | 2019年 / 46卷 / 03期
关键词
image processing; convolutional neural network; seam tracking; automatic welding system; deep learning;
D O I
10.3788/CJL201946.0302002
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Based on the feature learning ability of deep convolutional neural networks, a weld feature extraction method based on fully convolutional networks is proposed. In this method, the fully convolutional networks is used to predict the pixels containing the feature information of the weld, and the edge feature information of weld is supplemented by the fusion of low-level and high-level feature information. The results show that the method can get the weld position accurately under the interference of strong arc and soot particles, and has the advantages of strong anti-interference ability and accurate recognition.
引用
收藏
页数:8
相关论文
共 16 条
  • [1] Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
  • [2] Guo J C, 2017, Chinese Journal of Lasers., V44
  • [3] Hariharan B, 2015, PROC CVPR IEEE, P447, DOI 10.1109/CVPR.2015.7298642
  • [4] Hu Kun, 2006, Chinese Journal of Scientific Instrument, V27, P1326
  • [5] Huo Ping, 2014, Electric Welding Machine, V44, P144, DOI 10.7512/j.issn.1001-2303.2014.12.31
  • [6] Caffe: Convolutional Architecture for Fast Feature Embedding
    Jia, Yangqing
    Shelhamer, Evan
    Donahue, Jeff
    Karayev, Sergey
    Long, Jonathan
    Girshick, Ross
    Guadarrama, Sergio
    Darrell, Trevor
    [J]. PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), 2014, : 675 - 678
  • [7] Lei ZL, 2018, ACTA OPT SINICA, V38
  • [8] Li JinGang Li JinGang, 2017, Water Saving Irrigation, P31
  • [9] [刘习文 LIU Xiwen], 2011, [激光与红外, Laser and Infrared], V41, P804
  • [10] Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965