AN EXTREME VALUES OF THE FUNCTION S(T) IN SHORT INTERVALS

被引:0
作者
Korolev, Maxim Aleksandrovich [1 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Gubkina Str 8, Moscow 119991, Russia
关键词
Riemann zeta-function; extreme values; critical line; RIEMANN ZETA-FUNCTION; ARGUMENT;
D O I
10.1007/s13226-016-0205-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain new estimates for the maximum and minimum of the argument of the Riemann zeta-function on very short segments of the critical line. These results are based on the Riemann hypothesis.
引用
收藏
页码:603 / 615
页数:13
相关论文
共 50 条
[31]   THE UNIVERSALITY OF SOME COMPOSITIONS ON SHORT INTERVALS [J].
Laurincikas, A. .
SIBERIAN MATHEMATICAL JOURNAL, 2021, 62 (03) :449-454
[32]   ON THE VARIANCE OF SUMS OF DIVISOR FUNCTIONS IN SHORT INTERVALS [J].
Lester, Stephen .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (12) :5015-5027
[33]   Notes on universality in short intervals and exponential shifts [J].
Andersson, Johan ;
Garunkstis, Ramunas ;
Kacinskaite, Roma ;
Nakai, Keita ;
Pankowski, Lukasz ;
Sourmelidis, Athanasios ;
Steuding, Rasa ;
Steuding, Joern ;
Wananiyakul, Saeree .
LITHUANIAN MATHEMATICAL JOURNAL, 2024, 64 (02) :125-137
[34]   DISTRIBUTION OF HECKE EIGENVALUES OF NEWFORMS IN SHORT INTERVALS [J].
Wu, Jie ;
Zhai, Wenguang .
QUARTERLY JOURNAL OF MATHEMATICS, 2013, 64 (02) :619-644
[35]   THE UNIVERSALITY OF AN ABSOLUTELY CONVERGENT SERIES ON SHORT INTERVALS [J].
Laurincikas, A. .
SIBERIAN MATHEMATICAL JOURNAL, 2021, 62 (06) :1076-1083
[36]   Joint extreme values of L-functions [J].
Mahatab, Kamalakshya ;
Pankowski, Lukasz ;
Vatwani, Akshaa .
MATHEMATISCHE ZEITSCHRIFT, 2022, 302 (02) :1177-1190
[37]   Extreme values of Dirichlet polynomials with multiplicative coefficients [J].
Xu, Max Wenqiang ;
Yang, Daodao .
JOURNAL OF NUMBER THEORY, 2024, 258 :173-180
[38]   On the derivatives of Hardy's function Z(t) [J].
Bui, Hung M. ;
Hall, Richard R. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (05) :2304-2323
[39]   On the distribution of positive and negative values of Hardy's Z-function [J].
Gonek, Steven M. ;
Ivic, Aleksandar .
JOURNAL OF NUMBER THEORY, 2017, 174 :189-201
[40]   On the distribution of values of the argument of the Riemann zeta-function [J].
Ivic, Aleksandar P. ;
Korolev, Maxim A. .
JOURNAL OF NUMBER THEORY, 2019, 200 :96-131