A note on commutative weakly nil clean rings

被引:13
作者
Stancu, Alin [1 ]
机构
[1] Columbus State Univ, Dept Math, Columbus, GA 31907 USA
关键词
Nil clean rings; weakly nil clean rings; tensor product of algebras; QUANTIZED ENVELOPING-ALGEBRAS; ZONAL SPHERICAL-FUNCTIONS; QUANTUM SYMMETRIC PAIRS; COIDEAL SUBALGEBRAS;
D O I
10.1142/S0219498816200012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we discuss some properties of abelian (weakly) nil clean rings. We prove that any subring of an abelian (weakly) nil clean ring is (weakly) nil clean (Theorem 2). We also show that the tensor product of commutative (weakly) nil clean rings is also (weakly) nil clean and give sufficient conditions for the converse to be true (Theorems 3-6).
引用
收藏
页数:17
相关论文
共 17 条
[1]   Teichmuller Theory of Bordered Surfaces [J].
Chekhov, Leonid O. .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2007, 3
[2]  
De Concini C., 1995, GEOMETRY ANAL, P41
[3]   Homogeneous right coideal subalgebras of quantized enveloping algebras [J].
Heckenberger, I. ;
Kolb, S. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2012, 44 :837-848
[4]   RIGHT COIDEAL SUBALGEBRAS OF NICHOLS ALGEBRAS AND THE DUFLO ORDER ON THE WEYL GROUPOID [J].
Heckenberger, Istvan ;
Schneider, Hans-Juergen .
ISRAEL JOURNAL OF MATHEMATICS, 2013, 197 (01) :139-187
[5]  
Humphreys J.E., 1990, Reflection Groups and Coxeter Groups
[6]  
Jantzen J. C., 1995, AM MATH SOC GSM, V6, P141
[7]   Braid group actions on coideal subalgebras of quantized enveloping algebras [J].
Kolb, Stefan ;
Pellegrini, Jacopo .
JOURNAL OF ALGEBRA, 2011, 336 (01) :395-416
[8]  
Letzter G, 2002, MATH SCI R, V43, P117
[9]   Quantum symmetric pairs and their zonal spherical functions [J].
Letzter, G .
TRANSFORMATION GROUPS, 2003, 8 (03) :261-292
[10]   Symmetric pairs for quantized enveloping algebras [J].
Letzter, G .
JOURNAL OF ALGEBRA, 1999, 220 (02) :729-767