Following the flow: tracer particles in astrophysical fluid simulations

被引:129
作者
Genel, Shy [1 ]
Vogelsberger, Mark [1 ]
Nelson, Dylan [1 ]
Sijacki, Debora [1 ,2 ,3 ]
Springel, Volker [4 ,5 ]
Hernquist, Lars [1 ]
机构
[1] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
[2] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England
[3] Univ Cambridge, Kavli Inst Cosmol, Cambridge CB3 0HA, England
[4] Heidelberg Inst Theoret Studies, D-69118 Heidelberg, Germany
[5] Heidelberg Univ, Zentrum Astron, ARI, D-69120 Heidelberg, Germany
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
hydrodynamics; turbulence; methods: numerical; methods: statistical; galaxies: formation; cosmology: theory; MOVING-MESH COSMOLOGY; GALAXY FORMATION; NUMERICAL SIMULATIONS; HYDRODYNAMICS; TURBULENCE; GAS; NUCLEOSYNTHESIS; ALGORITHM; HALOES; COMPUTATION;
D O I
10.1093/mnras/stt1383
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present two numerical schemes for passive tracer particles in the hydrodynamical moving-mesh code arepo, and compare their performance for various problems, from simple set-ups to cosmological simulations. The purpose of tracer particles is to allow the flow to be followed in a Lagrangian way, tracing the evolution of the fluid with time, and allowing the thermodynamical history of individual fluid parcels to be recorded. We find that the commonly used 'velocity field tracers', which are advected using the fluid velocity field, do not in general follow the mass flow correctly, and explain why this is the case. This method can result in order-of-magnitude biases in simulations of driven turbulence and in cosmological simulations, rendering the velocity field tracers inappropriate for following these flows. We then discuss a novel implementation of 'Monte Carlo tracers', which are moved along with fluid cells and are exchanged probabilistically between them following the mass flux. This method reproduces the mass distribution of the fluid correctly. The main limitation of this approach is that it is more diffusive than the fluid itself. Nonetheless, we show that this novel approach is more reliable than that has been employed previously and demonstrate that it is appropriate for following hydrodynamical flows in mesh-based codes. The Monte Carlo tracers can also naturally be transferred between fluid cells and other types of particles, such as stellar particles, so that the mass flow in cosmological simulations can be followed in its entirety.
引用
收藏
页码:1426 / 1442
页数:17
相关论文
共 57 条
[1]   Fundamental differences between SPH and grid methods [J].
Agertz, Oscar ;
Moore, Ben ;
Stadel, Joachim ;
Potter, Doug ;
Miniati, Francesco ;
Read, Justin ;
Mayer, Lucio ;
Gawryszczak, Artur ;
Kravtosov, Andrey ;
Nordlund, Ake ;
Pearce, Frazer ;
Quilis, Vicent ;
Rudd, Douglas ;
Springel, Volker ;
Stone, James ;
Tasker, Elizabeth ;
Teyssier, Romain ;
Wadsley, James ;
Walder, Rolf .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2007, 380 (03) :963-978
[2]  
Anderson M. P., 2002, APPL GROUNDWATER MOD, P295
[3]   Universal intermittent properties of particle trajectories in highly turbulent flows [J].
Arneodo, A. ;
Benzi, R. ;
Berg, J. ;
Biferale, L. ;
Bodenschatz, E. ;
Busse, A. ;
Calzavarini, E. ;
Castaing, B. ;
Cencini, M. ;
Chevillard, L. ;
Fisher, R. T. ;
Grauer, R. ;
Homann, H. ;
Lamb, D. ;
Lanotte, A. S. ;
Leveque, E. ;
Luethi, B. ;
Mann, J. ;
Mordant, N. ;
Mueller, W. -C. ;
Ott, S. ;
Ouellette, N. T. ;
Pinton, J. -F. ;
Pope, S. B. ;
Roux, S. G. ;
Toschi, F. ;
Xu, H. ;
Yeung, P. K. .
PHYSICAL REVIEW LETTERS, 2008, 100 (25)
[4]   The effect of coherent structures on stochastic acceleration in mhd turbulence [J].
Arzner, K ;
Knaepen, B ;
Carati, D ;
Denewet, N ;
Vlahos, L .
ASTROPHYSICAL JOURNAL, 2006, 637 (01) :322-332
[5]   Subsonic turbulence in smoothed particle hydrodynamics and moving-mesh simulations [J].
Bauer, Andreas ;
Springel, Volker .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 423 (03) :2558-2578
[6]  
Biferale L, 2005, PHYS FLUIDS, V17, DOI [10.1063/1.1846771, 10.1063/1.2130751]
[7]   Multifractal statistics of Lagrangian velocity and acceleration in turbulence [J].
Biferale, L ;
Boffetta, G ;
Celani, A ;
Devenish, BJ ;
Lanotte, A ;
Toschi, F .
PHYSICAL REVIEW LETTERS, 2004, 93 (06) :064502-1
[8]   Type Ia supernovae: Simulations and nucleosynthesis [J].
Brown, EF ;
Calder, AC ;
Plewa, T ;
Ricker, PM ;
Robinson, K ;
Gallagher, JB .
NUCLEAR PHYSICS A, 2005, 758 :451C-454C
[9]   Cold streams in early massive hot haloes as the main mode of galaxy formation [J].
Dekel, A. ;
Birnboim, Y. ;
Engel, G. ;
Freundlich, J. ;
Goerdt, T. ;
Mumcuoglu, M. ;
Neistein, E. ;
Pichon, C. ;
Teyssier, R. ;
Zinger, E. .
NATURE, 2009, 457 (7228) :451-454
[10]   IMPOSING A LAGRANGIAN PARTICLE FRAMEWORK ON AN EULERIAN HYDRODYNAMICS INFRASTRUCTURE IN FLASH [J].
Dubey, A. ;
Daley, C. ;
ZuHone, J. ;
Ricker, P. M. ;
Weide, K. ;
Graziani, C. .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2012, 201 (02)