Making Sense of the Mayhem behind Shape Control in the Synthesis of Gold Nanoparticles

被引:295
作者
Personick, Michelle L.
Mirkin, Chad A. [1 ]
机构
[1] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
PLASMON-MEDIATED SYNTHESIS; HIGH-INDEX FACETS; SINGLE-CRYSTAL; UNDERPOTENTIAL DEPOSITION; METAL NANOPARTICLES; OPTICAL-PROPERTIES; CHEMICAL SYNTHESIS; CONCAVE SURFACES; SILVER; GROWTH;
D O I
10.1021/ja408645b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The formation of anisotropic Au nanoparticles predominantly follows one of two growth pathways: (1) kinetic control or (2) selective surface passivation. This Perspective describes the mechanisms that control Au nanoparticle shape via these pathways in the context of three basic chemical parameters: metal complex reduction potential, metal ion availability, and adsorbate binding strength. These chemical parameters influence the crystallinity and surface facets of the Au nanoparticles, thus dictating particle shape. Understanding nanoparticle growth mechanisms in terms of simple chemical principles enables mechanistic insights to be more easily applied to other syntheses and gives them greater predictive power in the development of new preparations of metal nanoparticles with well-defined shapes. Background information regarding the growth of Au nanoparticles with control over shape is also provided, along with a perspective on unanswered mechanistic questions in noble-metal nanoparticle synthesis and promising directions for future studies.
引用
收藏
页码:18238 / 18247
页数:10
相关论文
共 86 条
[1]   Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature [J].
Aherne, Damian ;
Ledwith, Deirdre M. ;
Gara, Matthew ;
Kelly, John M. .
ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (14) :2005-2016
[2]  
Bard A. J., 1985, STANDARD POTENTIALS
[3]  
Brown L., 2011, Chemistry for Engineering Students
[4]   Chemical Kinetics of Gold Nanorod Growth in Aqueous CTAB Solutions [J].
Bullen, Craig ;
Zijlstra, Peter ;
Bakker, Eric ;
Gu, Min ;
Raston, Colin .
CRYSTAL GROWTH & DESIGN, 2011, 11 (08) :3375-3380
[5]   The Crystalline Structure of Gold Nanorods Revisited: Evidence for Higher-Index Lateral Facets [J].
Carbo-Argibay, Enrique ;
Rodriguez-Gonzalez, Benito ;
Gomez-Grana, Sergio ;
Guerrero-Martinez, Andres ;
Pastoriza-Santos, Isabel ;
Perez-Juste, Jorge ;
Liz-Marzan, Luis M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (49) :9397-9400
[6]   VOLTAMMETRIC STUDY OF THE UNDERPOTENTIAL DEPOSITION OF COPPER ON POLYCRYSTALLINE AND SINGLE-CRYSTAL PALLADIUM SURFACES [J].
CHIERCHIE, T ;
MAYER, C .
ELECTROCHIMICA ACTA, 1988, 33 (03) :341-345
[7]   Octopods versus Concave Nanocrystals: Control of Morphology by Manipulating the Kinetics of Seeded Growth via Co-Reduction [J].
DeSantis, Christopher J. ;
Peverly, Angela A. ;
Peters, Dennis G. ;
Skrabalak, Sara E. .
NANO LETTERS, 2011, 11 (05) :2164-2168
[8]   Simple Reductant Concentration-Dependent Shape Control of Polyhedral Gold Nanoparticles and Their Plasmonic Properties [J].
Eguchi, Miharu ;
Mitsui, Daisuke ;
Wu, Hsin-Lun ;
Sato, Ryota ;
Teranishi, Toshiharu .
LANGMUIR, 2012, 28 (24) :9021-9026
[9]   Gold Nanoparticles for Biology and Medicine [J].
Giljohann, David A. ;
Seferos, Dwight S. ;
Daniel, Weston L. ;
Massich, Matthew D. ;
Patel, Pinal C. ;
Mirkin, Chad A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (19) :3280-3294
[10]   Seed-mediated synthesis of gold nanorods: Role of the size and nature of the seed [J].
Gole, A ;
Murphy, CJ .
CHEMISTRY OF MATERIALS, 2004, 16 (19) :3633-3640