Identification of microRNAs in the Toxigenic Dinoflagellate Alexandrium catenella by High-Throughput Illumina Sequencing and Bioinformatic Analysis

被引:14
作者
Geng, Huili [1 ]
Sui, Zhenghong [1 ]
Zhang, Shu [1 ]
Du, Qingwei [1 ]
Ren, Yuanyuan [1 ]
Liu, Yuan [1 ]
Kong, Fanna [1 ]
Zhong, Jie [1 ]
Ma, Qingxia [1 ]
机构
[1] Ocean Univ China, Key Lab Marine Genet & Breeding, Minist Educ, Qingdao 266003, Peoples R China
来源
PLOS ONE | 2015年 / 10卷 / 09期
基金
中国国家自然科学基金;
关键词
DEPENDENT PROTEIN-KINASE; CELL-CYCLE REGULATION; SMALL RNAS; ARABIDOPSIS-THALIANA; EXPRESSION PROFILES; PLANT MICRORNAS; GENE-EXPRESSION; ORYZA-SATIVA; CALMODULIN; CALCIUM;
D O I
10.1371/journal.pone.0138709
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Micro-ribonucleic acids (miRNAs) are a large group of endogenous, tiny, non-coding RNAs consisting of 19-25 nucleotides that regulate gene expression at either the transcriptional or post-transcriptional level by mediating gene silencing in eukaryotes. They are considered to be important regulators that affect growth, development, and response to various stresses in plants. Alexandrium catenella is an important marine toxic phytoplankton species that can cause harmful algal blooms (HABs). To date, identification and function analysis of miRNAs in A. catenella remain largely unexamined. In this study, high-throughput sequencing was performed on A. catenella to identify and quantitatively profile the repertoire of small RNAs from two different growth phases. A total of 38,092,056 and 32,969,156 raw reads were obtained from the two small RNA libraries, respectively. In total, 88 mature miRNAs belonging to 32 miRNA families were identified. Significant differences were found in the member number, expression level of various families, and expression abundance of each member within a family. A total of 15 potentially novel miRNAs were identified. Comparative profiling showed that 12 known miRNAs exhibited differential expression between the lag phase and the logarithmic phase. Real-time quantitative RT-PCR (qPCR) was performed to confirm the expression of two differentially expressed miRNAs that were one up-regulated novel miRNA (aca-miR-3p-456915), and one down-regulated conserved miRNA (tae-miR159a). The expression trend of the qPCR assay was generally consistent with the deep sequencing result. Target predictions of the 12 differentially expressed miRNAs resulted in 1813target genes. Gene ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomes pathway database (KEGG) annotations revealed that some miRNAs were associated with growth and developmental processes of the alga. These results provide insights into the roles that miRNAs play in the growth of A. catenella, and they provide the basis for further studies of the molecular mechanisms that underlie bloom growth in red tides species.
引用
收藏
页数:21
相关论文
共 78 条
  • [1] Modulation of floral development by a gibberellin-regulated microRNA
    Achard, P
    Herr, A
    Baulcombe, DC
    Harberd, NP
    [J]. DEVELOPMENT, 2004, 131 (14): : 3357 - 3365
  • [2] Alberts B., 1994, Molecular Biology of the Cell, P139
  • [3] Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana
    Allen, E
    Xie, ZX
    Gustafson, AM
    Sung, GH
    Spatafora, JW
    Carrington, JC
    [J]. NATURE GENETICS, 2004, 36 (12) : 1282 - 1290
  • [4] Cloning and characterization of micro-RNAs from moss
    Arazi, T
    Talmor-Neiman, M
    Stav, R
    Riese, M
    Huijser, P
    Baulcombe, DC
    [J]. PLANT JOURNAL, 2005, 43 (06) : 837 - 848
  • [5] The significance of digital gene expression profiles
    Audic, S
    Claverie, JM
    [J]. GENOME RESEARCH, 1997, 7 (10): : 986 - 995
  • [6] MicroRNAs: At the root of plant development?
    Bartel, B
    Bartel, DP
    [J]. PLANT PHYSIOLOGY, 2003, 132 (02) : 709 - 717
  • [7] MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004)
    Bartel, David P.
    [J]. CELL, 2007, 131 (04) : 11 - 29
  • [8] Integrating microRNA and mRNA expression profiling in Symbiodinium microadriaticum, a dinoflagellate symbiont of reef-building corals
    Baumgarten, Sebastian
    Bayer, Till
    Aranda, Manuel
    Liew, Yi Jin
    Carr, Adrian
    Micklem, Gos
    Voolstra, Christian R.
    [J]. BMC GENOMICS, 2013, 14
  • [9] Computational prediction and experimental validation of microRNAs in the brown alga Ectocarpus siliculosus
    Billoud, Bernard
    Nehr, Zofia
    Le Bail, Aude
    Charrier, Benedicte
    [J]. NUCLEIC ACIDS RESEARCH, 2014, 42 (01) : 417 - 429
  • [10] Detection of 91 potential in plant conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes
    Bonnet, E
    Wuyts, J
    Rouzé, P
    Van de Peer, Y
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (31) : 11511 - 11516