Equivariant characteristic classes of external and symmetric products of varieties

被引:2
作者
Maxim, Laurentiu [1 ]
Schuermann, Joerg
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
SINGULAR ALGEBRAIC-VARIETIES; CHERN CLASSES; RIEMANN-ROCH; ELLIPTIC-OPERATORS; HILBERT SCHEMES; K-THEORY; POINTS; COHOMOLOGY; OPERATIONS; VALUES;
D O I
10.2140/gt.2018.22.471
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain refined generating series formulae for equivariant characteristic classes of external and symmetric products of singular complex quasiprojective varieties. More concretely, we study equivariant versions of Todd, Chern and Hirzebruch classes for singular spaces, with values in delocalized Borel-Moore homology of external and symmetric products. As a byproduct, we recover our previous characteristic class formulae for symmetric products and obtain new equivariant generalizations of these results, in particular also in the context of twisting by representations of the symmetric group.
引用
收藏
页码:471 / 515
页数:45
相关论文
共 43 条
  • [1] POWER OPERATIONS IN K-THEORY
    ATIYAH, MF
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1966, 17 (66) : 165 - &
  • [2] ATIYAH MF, 1968, ANN MATH, V87, P546, DOI 10.2307/1970717
  • [3] BAUM P, 1985, CR ACAD SCI I-MATH, V300, P605
  • [4] LEFSCHETZ-RIEMANN-ROCH FOR SINGULAR-VARIETIES
    BAUM, P
    FULTON, W
    QUART, G
    [J]. ACTA MATHEMATICA, 1979, 143 (3-4) : 193 - 211
  • [5] Baum P., 1988, A fete of topology, P163, DOI 10.1016/B978-0-12-480440-1.50015-0
  • [6] Baum P., 1975, Publ. Math. IHES, V45, P101
  • [7] Bergh D, 2014, PREPRINT
  • [8] McKay correspondence for elliptic genera
    Borisov, L
    Libgober, A
    [J]. ANNALS OF MATHEMATICS, 2005, 161 (03) : 1521 - 1569
  • [9] HIRZEBRUCH CLASSES AND MOTIVIC CHERN CLASSES FOR SINGULAR SPACES
    Brasselet, Jean-Paul
    Schuermann, Joerg
    Yokura, Shoji
    [J]. JOURNAL OF TOPOLOGY AND ANALYSIS, 2010, 2 (01) : 1 - 55
  • [10] Characteristic classes of Hilbert schemes of points via symmetric products
    Cappell, Sylvain
    Maxim, Laurentiu
    Ohmoto, Toru
    Schuermann, Joerg
    Yokura, Shoji
    [J]. GEOMETRY & TOPOLOGY, 2013, 17 (02) : 1165 - 1198