The Arabidopsis transcription factor ESR1 induces in vitro shoot regeneration through transcriptional activation

被引:29
作者
Matsuo, Naoki [2 ]
Banno, Hiroharu [1 ]
机构
[1] Chubu Univ, Coll Biosci & Biotechnol, Dept Environm Biol, Aichi 4878501, Japan
[2] Chubu Univ, Plant Biol Res Ctr, Aichi 4878501, Japan
关键词
AP2/ERF protein; ESR1; Shoot regeneration; Transcription factor;
D O I
10.1016/j.plaphy.2008.07.007
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The Arabidopsis Enhancer of Shoot Regeneration 1 (ESR1) gene regulates initiation of in vitro shoot regeneration. In this study, we investigated the transcription-modulating potential of ESR1. ESR1 induced reporter gene expression when overexpressed transiently in Arabidopsis leaf cells. Experiments using a fusion protein with the GAL4 DNA-binding domain located a transactivating domain of ESR1 within the C-terminal region. A nuclear localization signal was also located within the AP2/ERF domain. These results demonstrated that ESR1 functions as a transcriptional activator. Furthermore, we examined whether transcriptional modulation by ESR1 affects the in vitro shoot regeneration efficiency. Overexpression of ESR1 fused with the VP16 transactivating domain enhanced in vitro shoot regeneration as well as overexpressed wild-type ESR1 did, while overexpression of ESR1 fused with a strong repression domain, SRDX, inhibited shoot regeneration. These results suggest that ESR1 induces shoot regeneration through its transactivating ability. (C) 2008 Published by Elsevier Masson SAS.
引用
收藏
页码:1045 / 1050
页数:6
相关论文
共 34 条
[1]   Role of DREB transcription factors in abiotic and biotic stress tolerance in plants [J].
Agarwal, Pradeep K. ;
Agarwal, Parinita ;
Reddy, M. K. ;
Sopory, Sudhir K. .
PLANT CELL REPORTS, 2006, 25 (12) :1263-1274
[2]   The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis [J].
Aharoni, A ;
Dixit, S ;
Jetter, R ;
Thoenes, E ;
van Arkel, G ;
Pereira, A .
PLANT CELL, 2004, 16 (09) :2463-2480
[3]   A glucocorticoid-mediated transcriptional induction system in transgenic plants [J].
Aoyama, T ;
Chua, NH .
PLANT JOURNAL, 1997, 11 (03) :605-612
[4]   Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration [J].
Banno, H ;
Ikeda, Y ;
Niu, QW ;
Chua, NH .
PLANT CELL, 2001, 13 (12) :2609-2618
[5]  
Banno H., 2006, PLANT BIOTECHNOL-NAR, V23, P303
[6]   WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis [J].
Broun, P ;
Poindexter, P ;
Osborne, E ;
Jiang, CZ ;
Riechmann, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (13) :4706-4711
[7]   The AP2 transcription factors DORNROSCHEN and DORNROSCHEN-LIKE redundantly control Arabidopsis embryo patterning via interaction with PHAVOLUTA [J].
Chandler, John W. ;
Cole, Melanie ;
Flier, Annegret ;
Grewe, Britta ;
Werr, Wolfgang .
DEVELOPMENT, 2007, 134 (09) :1653-1662
[8]   Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression [J].
Fujimoto, SY ;
Ohta, M ;
Usui, A ;
Shinshi, H ;
Ohme-Takagi, M .
PLANT CELL, 2000, 12 (03) :393-404
[9]   SPECIFIC DNA-BINDING OF GAL4, A POSITIVE REGULATORY PROTEIN OF YEAST [J].
GINIGER, E ;
VARNUM, SM ;
PTASHNE, M .
CELL, 1985, 40 (04) :767-774
[10]   Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis [J].
Gu, YQ ;
Wildermuth, MC ;
Chakravarthy, S ;
Loh, YT ;
Yang, CM ;
He, XH ;
Han, Y ;
Martin, GB .
PLANT CELL, 2002, 14 (04) :817-831