Effect of substituents on surface equilibria of thiophenols and isoquinolines on gold substrates studied using surface-enhanced Raman spectroscopy

被引:15
|
作者
Emmons, Erik D. [1 ]
Guicheteau, Jason A. [1 ]
Fountain, Augustus W., III [1 ,2 ]
Tripathi, Ashish [1 ]
机构
[1] US Army CCDC Chem Biol Ctr, Res & Technol Directorate, Aberdeen Proving Ground, MD 21010 USA
[2] Univ South Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA
关键词
VIBRATIONAL-SPECTRA; SILVER FILM; SERS; ADSORPTION; SCATTERING; ASSIGNMENTS; AMINOTHIOPHENOL; QUINOLINE; 4-BROMOISOQUINOLINE; IDENTIFICATION;
D O I
10.1039/d0cp01125h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The effect of substituents on the surface adsorption equilibria of thiophenols and isoquinolines on gold substrates was studied using surface-enhanced Raman spectroscopy (SERS) in order to determine the effects of the localized dipole moments and charge donating/withdrawing properties on the binding affinity. Two common classes of molecules used in SERS studies were examined, which included substituted aromatic thiols and nitrogen heterocyclic aromatic molecules (azaarenes), due to their strong affinity for gold surfaces. Unsubstituted thiophenol in aqueous solution binds strongly to gold surfaces. Therefore, it is difficult to measure an equilibrium constant, since even at concentrations of 10(-8)M nearly a complete self-assembled monolayer (SAM) forms. In contrast, substituted thiophenols with electron-withdrawing groups, such as halogenated thiophenols, bind much less strongly, allowing equilibrium constants to be obtained. It is believed that the substituent withdrawing charge away from the sulfur atom affects the adsorption/binding between the analyte and surface. Thiophenols substituted with electron donating groups behaved similar to unsubstituted thiophenol, where a SAM was observed at concentrations as low as 10(-8)M. These functional groups did not hinder the ability of the sulfur groups to bind with gold. In addition, a series of bromine-substituted isoquinolines, a group of azaarene compounds, were measured to determine the effects that the bromine substituent has when it is bound to the two different rings and if position on the rings has an effect. The azaarene class of molecules, including isoquinoline, adsorbs less strongly than thiophenols, and a dual Langmuir isotherm phenomenon is observed where protonated and neutral bromoisoquinoline molecules occupy two different types of sites on Klarite substrates, which consist of inverted micro-pyramids on Si wafers with rough/nanostructured Au coatings. Protonated isoquinolines bind to nucleophilic sites on the substrates which tend to occur on flatter regions of the substrate. By contrast, neutral isoquinolines bind to electrophilic sites which are predominant near microscopic edges on the substrate. The presence of the bromine substituent and its position in the fused ring structure changes the Gibbs free energies of adsorption, depending on which ring the substituent is in. These results can help to guide the development of SERS for analytical applications by demonstrating how changes in functional groups can affect the equilibrium constants, which are critical for determining the effectiveness of SERS as a tool for trace detection of analytes.
引用
收藏
页码:15953 / 15965
页数:13
相关论文
共 50 条
  • [1] Dendritic gold substrates for surface-enhanced Raman spectroscopy
    Watling, Kym M.
    Hope, Gregory A.
    2006 INTERNATIONAL CONFERENCE ON NANOSCIENCE AND NANOTECHNOLOGY, VOLS 1 AND 2, 2006, : 598 - +
  • [2] Ordered Gold Nanobowl Arrays as Substrates for Surface-Enhanced Raman Spectroscopy
    Chen Ling
    Liu Fan-Xin
    Zhan Peng
    Pan Jian
    Wang Zhen-Lin
    CHINESE PHYSICS LETTERS, 2011, 28 (05)
  • [3] Advanced silver and gold substrates for surface-enhanced Raman spectroscopy of pesticides
    Atanasov, Petar Asenov
    Nedyalkov, Nikolay Nedyalkov
    Fukata, Naoki
    Jevasuwan, Wipakorn
    SPECTROSCOPY LETTERS, 2021, 54 (07) : 528 - 538
  • [4] Nanostructured gold surfaces as reproducible substrates for surface-enhanced Raman spectroscopy
    Sackmann, M.
    Bom, S.
    Balster, T.
    Materny, A.
    JOURNAL OF RAMAN SPECTROSCOPY, 2007, 38 (03) : 277 - 282
  • [5] Gold Nanoparticle Plasmonic Superlattices as Surface-Enhanced Raman Spectroscopy Substrates
    Matricardi, Cristiano
    Hanske, Christoph
    Garcia-Pomar, Juan Luis
    Langer, Judith
    Mihi, Agustin
    Liz-Marzan, Luis M.
    ACS NANO, 2018, 12 (08) : 8531 - 8539
  • [6] A practical method to fabricate gold substrates for surface-enhanced Raman spectroscopy
    Tantra, Ratna
    Brown, Richard J. C.
    Milton, Martin J. T.
    Gohil, Dipak
    APPLIED SPECTROSCOPY, 2008, 62 (09) : 992 - 1000
  • [7] Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates
    Qi, Ji
    Motwani, Pratik
    Gheewala, Mufaddal
    Brennan, Christopher
    Wolfe, John C.
    Shih, Wei-Chuan
    NANOSCALE, 2013, 5 (10) : 4105 - 4109
  • [8] The Variety of Substrates for Surface-enhanced Raman Spectroscopy
    Mikac, L.
    Gotic, M.
    Gebavi, H.
    Ivanda, M.
    PROCEEDINGS OF THE 2017 IEEE 7TH INTERNATIONAL CONFERENCE NANOMATERIALS: APPLICATION & PROPERTIES (NAP), 2017,
  • [9] Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy
    Matsukovich, A. S.
    Shabunya-Klyachkovskaya, E., V
    Sawczak, M.
    Grochowska, K.
    Maskowicz, D.
    Sliwinski, G.
    INTERNATIONAL JOURNAL OF NANOSCIENCE, 2019, 18 (3-4)
  • [10] The uptake of gold nanoparticles by endothelial cells studied by surface-enhanced Raman spectroscopy
    Jaworska, Aleksandra
    Malek, Kamilla
    Kachamakova-Trojanowska, Neli
    Chlopicki, Stefan
    Baranska, Malgorzata
    BIOMEDICAL SPECTROSCOPY AND IMAGING, 2013, 2 (03) : 183 - 189