Restricted Recalibration of Item Response Theory Models

被引:9
作者
Liu, Yang [1 ]
Yang, Ji Seung [1 ]
Maydeu-Olivares, Alberto [2 ,3 ]
机构
[1] Univ Maryland, College Pk, MD 20742 USA
[2] Univ South Carolina, Columbia, SC 29208 USA
[3] Univ Barcelona, Barcelona, Spain
基金
美国国家科学基金会;
关键词
item response theory; measurement invariance; cross-validation; item calibration; pseudo-maximum likelihood; residual; contingency table; goodness of fit; MAXIMUM-LIKELIHOOD-ESTIMATION; INTEGRATIVE DATA-ANALYSIS; LIMITED-INFORMATION; CROSS-VALIDATION; CONTINGENCY-TABLES; LOCAL DEPENDENCE; FIT; RESIDUALS; DIAGNOSTICS; INVARIANCE;
D O I
10.1007/s11336-019-09667-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In item response theory (IRT), it is often necessary to perform restricted recalibration (RR) of the model: A set of (focal) parameters is estimated holding a set of (nuisance) parameters fixed. Typical applications of RR include expanding an existing item bank, linking multiple test forms, and associating constructs measured by separately calibrated tests. In the current work, we provide full statistical theory for RR of IRT models under the framework of pseudo-maximum likelihood estimation. We describe the standard error calculation for the focal parameters, the assessment of overall goodness-of-fit (GOF) of the model, and the identification of misfitting items. We report a simulation study to evaluate the performance of these methods in the scenario of adding a new item to an existing test. Parameter recovery for the focal parameters as well as Type I error and power of the proposed tests are examined. An empirical example is also included, in which we validate the pediatric fatigue short-form scale in the Patient-Reported Outcome Measurement Information System (PROMIS), compute global and local GOF statistics, and update parameters for the misfitting items.
引用
收藏
页码:529 / 553
页数:25
相关论文
共 77 条
[1]  
[Anonymous], 2009, The sage handbook of quantitative methods in psychology
[2]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[3]  
Birnbaum AL, 1968, Statistical Theories of Mental Test Scores
[4]  
Bock R. D., 1997, HDB MODERN ITEM RESP, P433, DOI DOI 10.1007/978-1-4757-2691-6_25
[5]  
BOCK RD, 1970, PSYCHOMETRIKA, V35, P179
[6]   MARGINAL MAXIMUM-LIKELIHOOD ESTIMATION OF ITEM PARAMETERS - APPLICATION OF AN EM ALGORITHM [J].
BOCK, RD ;
AITKIN, M .
PSYCHOMETRIKA, 1981, 46 (04) :443-459
[7]   SOME THEOREMS ON QUADRATIC FORMS APPLIED IN THE STUDY OF ANALYSIS OF VARIANCE PROBLEMS .1. EFFECT OF INEQUALITY OF VARIANCE IN THE ONE-WAY CLASSIFICATION [J].
BOX, GEP .
ANNALS OF MATHEMATICAL STATISTICS, 1954, 25 (02) :290-302
[8]  
Boyd S., 2004, Convex Optimization, DOI [10.1017/CBO9780511804441, DOI 10.1017/CBO9780511804441]
[9]   A Bayesian random effects model for testlets [J].
Bradlow, ET ;
Wainer, H ;
Wang, XH .
PSYCHOMETRIKA, 1999, 64 (02) :153-168
[10]  
Breithaupt K, 2010, STAT SOC BEHAV SC, P247, DOI 10.1007/978-0-387-85461-8_13