Strain-Based Consensus in Soft, Inflatable Robots

被引:3
作者
Nilles, Alexandra [1 ]
Ceron, Steven [2 ]
Napp, Nils [1 ]
Petersen, Kirstin [1 ]
机构
[1] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14853 USA
[2] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA
来源
2022 IEEE 5TH INTERNATIONAL CONFERENCE ON SOFT ROBOTICS (ROBOSOFT) | 2022年
基金
美国国家科学基金会;
关键词
D O I
10.1109/ROBOSOFT54090.2022.9762180
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Soft robots actuate themselves and their world through induced pressure and strain, and can often sense these quantities as well. We hypothesize that coordination in a tightly coupled collective of soft robots can be achieved with purely proprioceptive sensing and no direct communication. In this paper, we target a platform of soft pneumatic modules capable of sensing strain on their perimeter, with the goal of using only the robots' own soft actuators and sensors as a medium for distributed coordination. However, methods for modelling, sensing, and controlling strain in such soft robot collectives are not well understood. To address this challenge, we introduce and validate a computationally efficient spring-based model for two-dimensional sheets of soft pneumatic robots. We then translate a classical consensus algorithm to use only proprioceptive data, test in simulation, and show that due to the physical coupling between robots we can achieve consensus-like coordination. We discuss the unique challenges of strain sensors and next steps to bringing these findings to hardware. These findings have promising potential for smart materials and large-scale collectives, because they omit the need for additional communication infrastructure to support coordination.
引用
收藏
页码:789 / 794
页数:6
相关论文
共 18 条
[1]   From collections of independent, mindless robots to flexible, mobile, and directional superstructures [J].
Boudet, J. F. ;
Lintuvuori, J. ;
Lacouture, C. ;
Barois, T. ;
Deblais, A. ;
Xie, K. ;
Cassagnere, S. ;
Tregon, B. ;
Brueckner, D. B. ;
Baret, J. C. ;
Kellay, H. .
SCIENCE ROBOTICS, 2021, 6 (56)
[2]  
Ceron Steven., 2021, IEEE Robotics and Automation Letters, P1
[3]   Low rattling: A predictive principle for self-organization in active collectives [J].
Chvykov, Pavel ;
Berrueta, Thomas A. ;
Vardhan, Akash ;
Savoie, William ;
Samland, Alexander ;
Murphey, Todd D. ;
Wiesenfeld, Kurt ;
Goldman, Daniel, I ;
England, Jeremy L. .
SCIENCE, 2021, 371 (6524) :90-95
[4]  
Della Santina C, 2021, Arxiv, DOI arXiv:2110.01358
[5]   Vertex Models of Epithelial Morphogenesis [J].
Fletcher, Alexander G. ;
Osterfield, Miriam ;
Baker, Ruth E. ;
Shvartsman, Stanislav Y. .
BIOPHYSICAL JOURNAL, 2014, 106 (11) :2291-2304
[6]   Model-free regulation of multilink smart materials robots [J].
Ge, SS ;
Lee, TH ;
Wang, ZP .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2001, 6 (03) :346-351
[7]  
Hamann H., 2018, Swarm robotics: a formal approach, DOI DOI 10.1007/978-3-319-74528-2
[8]  
Karimi MA, 2020, 2020 3RD IEEE INTERNATIONAL CONFERENCE ON SOFT ROBOTICS (ROBOSOFT), P291, DOI [10.1109/RoboSoft48309.2020.9115996, 10.1109/robosoft48309.2020.9115996]
[9]   Particle robotics based on statistical mechanics of loosely coupled components [J].
Li, Shuguang ;
Batra, Richa ;
Brown, David ;
Chang, Hyun-Dong ;
Ranganathan, Nikhil ;
Hoberman, Chuck ;
Rus, Daniela ;
Lipson, Hod .
NATURE, 2019, 567 (7748) :361-+
[10]   Simple, Low-Cost Fabrication of Soft Sensors for Shape Reconstruction [J].
Ma, Danna ;
Ceron, Steven ;
Kaiser, Gregory ;
Petersen, Kirstin .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (03) :4049-4054