Representation stability in cohomology and asymptotics for families of varieties over finite fields

被引:40
作者
Church, Thomas [1 ]
Ellenberg, Jordan S. [2 ]
Farb, Benson [3 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[3] Univ Chicago, Dept Math, Chicago, IL 60637 USA
来源
ALGEBRAIC TOPOLOGY: APPLICATIONS AND NEW DIRECTIONS | 2014年 / 620卷
基金
美国国家科学基金会;
关键词
POINTS;
D O I
10.1090/conm/620/12395
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider two families X-n of varieties on which the symmetric group S-n acts: the configuration space of n points in C and the space of n linearly independent lines in C-n. Given an irreducible S-n-representation V, one can ask how the multiplicity of V in the cohomology groups H* (x(n); Q) varies with n. We explain how the Grothendieck-Lefschetz Fixed Point Theorem converts a formula for this multiplicity to a formula for the number of polynomials over F-q (resp. maximal tori in GL(n)(F-q)) with specified properties related to V. In particular, we explain how representation stability in cohomology, in the sense of [Church, Farb, 2013] and [Church, Ellenberg, Farb, 2012] corresponds to asymptotic stability of various point counts as n -> infinity.
引用
收藏
页码:1 / 54
页数:54
相关论文
共 26 条
[1]  
Arnold V.I., 1970, T MOSK MATEM OBVA, V21, P27
[2]   ON RANDOM POLYNOMIALS OVER FINITE-FIELDS [J].
ARRATIA, R ;
BARBOUR, AD ;
TAVARE, S .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1993, 114 :347-368
[4]  
Borel A., 1991, Linear Algebraic Groups, DOI [10.1007/978-1-4612-0941-6, DOI 10.1007/978-1-4612-0941-6]
[5]  
Carter Roger W., 1985, PURE APPL MATH
[6]   INVARIANTS OF FINITE GROUPS GENERATED BY REFLECTIONS [J].
CHEVALLEY, C .
AMERICAN JOURNAL OF MATHEMATICS, 1955, 77 (04) :778-782
[7]  
Church T., 2012, ARXIV12044533
[8]   Representation theory and homological stability [J].
Church, Thomas ;
Farb, Benson .
ADVANCES IN MATHEMATICS, 2013, 245 :250-314
[9]  
Flajolet P., 1996, Automata, Languages and Programming. 23rd International Colloquium, ICALP '96. Proceedings, P232
[10]  
Fulton William, 1997, LONDON MATH SOC STUD, V35