JUMP-DIFFUSION RISK-SENSITIVE ASSET MANAGEMENT II: JUMP-DIFFUSION FACTOR MODEL

被引:20
作者
Davis, Mark [1 ]
Lleo, Sebastien [2 ,3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Reims Management Sch, Dept Finance, F-51100 Reims, France
[3] Reims Management Sch, Value & Persuas Res Ctr, F-51100 Reims, France
基金
英国工程与自然科学研究理事会;
关键词
asset management; risk-sensitive stochastic control; jump-diffusion processes; Poisson point processes; Levy processes; HJB PIDE; policy improvement; parabolic PDE; classical solutions; viscosity solutions;
D O I
10.1137/110825881
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article we extend our earlier work on the jump-diffusion risk-sensitive asset management problem in a factor model [SIAM J. Financial Math., 2 (2011), pp. 22-54] by allowing jumps in both the factor process and the asset prices, as well as stochastic volatility and investment constraints. In this case, the Hamilton-Jacobi-Bellman (HJB) equation is a partial integro-differential equation (PIDE). We are able to show that finding a viscosity solution to this PIDE is equivalent to finding a viscosity solution to a related PDE, for which classical results give uniqueness. With this in hand, a policy improvement argument and classical results on parabolic PDEs show that the HJB PIDE admits a unique smooth solution. The optimal investment strategy is given by the feedback control that minimizes the Hamiltonian function appearing in the HJB PIDE.
引用
收藏
页码:1441 / 1480
页数:40
相关论文
共 22 条
[1]  
[Anonymous], 1968, TRANSLATIONS MATH MO
[2]   Second-order elliptic integro-differential equations: viscosity solutions' theory revisited [J].
Barles, B. ;
Imbert, Cyril .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (03) :567-585
[3]   Risk-sensitive dynamic asset management [J].
Bielecki, TR ;
Pliska, SR .
APPLIED MATHEMATICS AND OPTIMIZATION, 1999, 39 (03) :337-360
[4]   WEAK DYNAMIC PROGRAMMING PRINCIPLE FOR VISCOSITY SOLUTIONS [J].
Bouchard, Bruno ;
Touzi, Nizar .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2011, 49 (03) :948-962
[5]   Equivalent and absolutely continuous measure changes for jump-diffusion processes [J].
Cheridito, P ;
Filipovic, D ;
Yor, M .
ANNALS OF APPLIED PROBABILITY, 2005, 15 (03) :1713-1732
[6]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[7]  
Davis M., 2013, STOCHASTIC PROGRAMMI, P97, DOI DOI 10.1142/9789814407519_0005
[8]   Jump-Diffusion Risk-Sensitive Asset Management I: Diffusion Factor Model [J].
Davis, Mark ;
Lleo, Sebastien .
SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2011, 2 (01) :22-54
[9]   IMPULSE CONTROL OF MULTIDIMENSIONAL JUMP DIFFUSIONS [J].
Davis, Mark H. A. ;
Guo, Xin ;
Wu, Guoliang .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2010, 48 (08) :5276-5293
[10]  
Davis MF, 2009, PA STUD HUM RIGHTS, P1