Envelope bright- and dark-soliton solutions for the Gerdjikov-Ivanov model

被引:117
作者
Lu, Xing [1 ,2 ]
Ma, Wen-Xiu [2 ]
Yu, Jun [2 ,3 ]
Lin, Fuhong [4 ]
Khalique, Chaudry Masood [5 ]
机构
[1] Beijing Jiao Tong Univ, Dept Math, Beijing 100044, Peoples R China
[2] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[3] Shaoxing Univ, Inst Nonlinear Sci, Shaoxing 312000, Peoples R China
[4] Univ Sci & Technol Beijing, Sch Comp & Commun Engn, Beijing 100083, Peoples R China
[5] North West Univ, Dept Math Sci, Int Inst Symmetry Anal & Math Modelling, ZA-2735 Mmabatho, South Africa
基金
上海市自然科学基金; 中国国家自然科学基金; 中国博士后科学基金;
关键词
Gerdjikov-Ivanov model; Madelung fluid description; Solitary wave; Envelope soliton; NONLINEAR SCHRODINGER-EQUATION; MADELUNG FLUID DESCRIPTION; OPTICAL SOLITONS; BIREFRINGENT FIBERS; WAVES;
D O I
10.1007/s11071-015-2227-6
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Within the context of the Madelung fluid description, investigation has been carried out on the connection between the envelope soliton-like solutions of a wide family of nonlinear Schrodinger equations and the soliton-like solutions of a wide family of Korteweg-de Vries or Korteweg-de Vries-type equations. Under suitable hypothesis for the current velocity, the Gerdjikov-Ivanov envelope solitons are derived and discussed in this paper. For a motion with the stationary profile current velocity, the fluid density satisfies a generalized stationary Gardner equation, which possesses bright- and dark-type (including gray and black) solitary waves due to associated parametric constraints, and finally envelope solitons are found correspondingly for the Gerdjikov-Ivanov model. Moreover, this approach may be useful for studying other nonlinear Schrodinger-type equations.
引用
收藏
页码:1211 / 1220
页数:10
相关论文
共 43 条
[1]  
Alshaery AA, 2014, J OPTOELECTRON ADV M, V16, P750
[2]   Bright and singular solitons in quadratic nonlinear media [J].
Alshaery, A. A. ;
Bhrawy, A. H. ;
Hilal, A. E. M. ;
Biswas, Anjan .
JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2014, 28 (03) :275-280
[3]  
Auletta G., 2000, Foundations and Interpretation of Quantum Mechanics
[4]   Optical solitons in birefringent fibers with spatio-temporal dispersion [J].
Bhrawy, A. H. ;
Alshaery, A. A. ;
Hilal, E. M. ;
Savescu, Michelle ;
Milovic, Daniela ;
Khan, Kaisar R. ;
Mahmood, Mohammad F. ;
Jovanoski, Zlatko ;
Biswas, Anjan .
OPTIK, 2014, 125 (17) :4935-4944
[5]  
Bhrawy AH, 2014, P ROMANIAN ACAD A, V15, P235
[6]   Dispersive optical solitons with Schrodinger-Hirota equation [J].
Bhrawy, A. H. ;
Alshaery, A. A. ;
Hilal, E. M. ;
Manrakhan, Wayne N. ;
Savescu, Michelle ;
Biswas, Anjan .
JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2014, 23 (01)
[7]  
Biswas A, 2014, ROM J PHYS, V59, P433
[8]  
BOHM D, 1952, PHYS REV, V85, P166, DOI 10.1103/PhysRev.85.166
[9]   Stable light-bullet solutions in the harmonic and parity-time-symmetric potentials [J].
Dai, Chao-Qing ;
Wang, Xiao-Gang ;
Zhou, Guo-Quan .
PHYSICAL REVIEW A, 2014, 89 (01)
[10]   Controllable Akhmediev breather and Kuznetsov-Ma soliton trains in PT-symmetric coupled waveguides [J].
Dai, Chaoqing ;
Wang, Yueyue ;
Zhang, Xiaofei .
OPTICS EXPRESS, 2014, 22 (24) :29862-29867