Thermalization in one- plus two-body ensembles for dense interacting boson systems

被引:20
作者
Chavda, N. D. [1 ]
Kota, V. K. B. [2 ]
Potbhare, V. [1 ]
机构
[1] Maharaja Sayajirao Univ Baroda, Dept Appl Phys, Fac Engn & Technol, Vadodara 390001, India
[2] Phys Res Lab, Ahmadabad 380009, Gujarat, India
关键词
BEGOE(1+2); Dense limit; Thermalization; Temperature; Entropy; Chaos marker; FINITE FERMI SYSTEMS; RANDOM-MATRIX ENSEMBLES; NUCLEAR SHELL-MODEL; GAUSSIAN ENSEMBLES; STATISTICAL-THEORY; PARTICLE-SYSTEMS; CHAOS; FLUCTUATIONS; SEPARATION; SPECTRUM;
D O I
10.1016/j.physleta.2012.08.054
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Employing one- plus two-body random matrix ensembles for bosons, temperature and entropy are calculated, using different definitions, as a function of the two-body interaction strength lambda for a system with 10 bosons (m = 10) in five single-particle levels (N = 5). It is found that in a region lambda similar to lambda(t) At, different definitions give essentially the same values for temperature and entropy, thus defining a thermalization region. Also, (m, N) dependence of lambda(t) has been derived. It is seen that lambda(t) is much larger than the lambda values where level fluctuations change from Poisson to GOE and strength functions change from Breit-Wigner to Gaussian. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2972 / 2976
页数:5
相关论文
共 37 条
[1]  
Angom D, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.016209
[2]   Spectral properties of the k-body embedded Gaussian ensembles of random matrices for bosons [J].
Asaga, T ;
Benet, L ;
Rupp, T ;
Weidenmüller, HA .
ANNALS OF PHYSICS, 2002, 298 (02) :229-247
[3]   Non-ergodic behaviour of the k-body embedded Gaussian random ensembles for bosons [J].
Asaga, T ;
Benet, L ;
Rupp, T ;
Weidenmüller, HA .
EUROPHYSICS LETTERS, 2001, 56 (03) :340-346
[4]   Emergence of Fermi-Dirac thermalization in the quantum computer core [J].
Benenti, G ;
Casati, G ;
Shepelyansky, DL .
EUROPEAN PHYSICAL JOURNAL D, 2001, 17 (02) :265-272
[5]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[6]   Chaos and thermalization in a dynamical model of two interacting particles [J].
Borgonovi, F ;
Guarneri, I ;
Izrailev, FM ;
Casati, G .
PHYSICS LETTERS A, 1998, 247 (1-2) :140-144
[7]   RANDOM-MATRIX PHYSICS - SPECTRUM AND STRENGTH FLUCTUATIONS [J].
BRODY, TA ;
FLORES, J ;
FRENCH, JB ;
MELLO, PA ;
PANDEY, A ;
WONG, SSM .
REVIEWS OF MODERN PHYSICS, 1981, 53 (03) :385-479
[8]  
Chavda N.D., 2012, J PHYS A, V45
[9]   Strength functions for interacting bosons in a mean-field with random two-body interactions [J].
Chavda, ND ;
Potbhare, V ;
Kota, VKB .
PHYSICS LETTERS A, 2004, 326 (1-2) :47-54
[10]   Statistical properties of dense interacting boson systems with one- plus two-body random matrix ensembles [J].
Chavda, ND ;
Potbhare, V ;
Kota, VKB .
PHYSICS LETTERS A, 2003, 311 (4-5) :331-339