Modified Kudryashov method for solving the conformable time-fractional Klein-Gordon equations with quadratic and cubic nonlinearities

被引:145
作者
Hosseini, K. [1 ]
Mayeli, P. [2 ]
Ansari, R. [3 ]
机构
[1] Islamic Azad Univ, Rasht Branch, Dept Math, Rasht, Iran
[2] Islamic Azad Univ, Lahijan Branch, Young Researchers & Elite Club, Lahijan, Iran
[3] Univ Guilan, Dept Mech Engn, Rasht, Iran
来源
OPTIK | 2017年 / 130卷
关键词
Time-fractional Klein-Gordon equations; Quadratic and cubic nonlinearities; Conformable fractional derivative; Modified Kudryashov method; New exact solutions; FUNCTIONAL VARIABLE METHOD; 1ST INTEGRAL METHOD; FINDING EXACT-SOLUTIONS; SPATIOTEMPORAL DISPERSION; DIFFERENTIAL-EQUATIONS; PERIODIC-SOLUTIONS; OPTICAL SOLITONS;
D O I
10.1016/j.ijleo.2016.10.136
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The nonlinear time-fractional Klein-Gordon equations play an important role in describing some physical events in solid state physics, nonlinear optics, and quantum field theory. In this paper, the time-fractional Klein-Gordon equations with quadratic and cubic non-linearities in the sense of the conformable fractional derivative are solved via the modified Kudryashov method. A few new explicit exact solutions of these equations are formally constructed. Results confirm the efficiency of the modified Kudryashov method in handling the conformable time-fractional Klein-Gordon equations with quadratic and cubic nonlinearities. (C) 2016 Elsevier GmbH. All rights reserved.
引用
收藏
页码:737 / 742
页数:6
相关论文
共 40 条
  • [1] On conformable fractional calculus
    Abdeljawad, Thabet
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 : 57 - 66
  • [2] Bekir A, 2014, COMPUT METHODS DIFFE, V2, P26
  • [3] Exact solutions of nonlinear time fractional partial differential equations by sub-equation method
    Bekir, Ahmet
    Aksoy, Esin
    Cevikel, Adem C.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (13) : 2779 - 2784
  • [4] The First Integral Method for Exact Solutions of Nonlinear Fractional Differential Equations
    Bekir, Ahmet
    Guner, Ozkan
    Unsal, Omer
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2015, 10 (02):
  • [5] Functional Variable Method for the Nonlinear Fractional Differential Equations
    Bekir, Ahmet
    Guner, Ozkan
    Aksoy, Esin
    Pandir, Yusuf
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
  • [6] Optical solitons in nano-fibers with spatio-temporal dispersion by trial solution method
    Biswas, Anjan
    Mirzazadeh, Mohammad
    Eslami, Mostafa
    Zhou, Qin
    Bhrawy, Ali
    Belic, Milivoj
    [J]. OPTIK, 2016, 127 (18): : 7250 - 7257
  • [7] cenesiz Y., 2016, WAVES RANDOM COMPLEX
  • [8] Traveling wave solutions of a (2+1)-dimensional Zakharov-like equation by the first integral method and the tanh method
    Darvishi, M. T.
    Arbabi, S.
    Najafi, M.
    Wazwaz, A. M.
    [J]. OPTIK, 2016, 127 (16): : 6312 - 6321
  • [9] Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions
    Dehghan, Mehdi
    Shokri, Ali
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 230 (02) : 400 - 410
  • [10] Exact structures for the KdV-mKdV equation with variable coefficients via the functional variable method
    Djoudi, W.
    Zerarka, A.
    [J]. OPTIK, 2016, 127 (20): : 9621 - 9626