Modified Kudryashov method for solving the conformable time-fractional Klein-Gordon equations with quadratic and cubic nonlinearities

被引:147
作者
Hosseini, K. [1 ]
Mayeli, P. [2 ]
Ansari, R. [3 ]
机构
[1] Islamic Azad Univ, Rasht Branch, Dept Math, Rasht, Iran
[2] Islamic Azad Univ, Lahijan Branch, Young Researchers & Elite Club, Lahijan, Iran
[3] Univ Guilan, Dept Mech Engn, Rasht, Iran
来源
OPTIK | 2017年 / 130卷
关键词
Time-fractional Klein-Gordon equations; Quadratic and cubic nonlinearities; Conformable fractional derivative; Modified Kudryashov method; New exact solutions; FUNCTIONAL VARIABLE METHOD; 1ST INTEGRAL METHOD; FINDING EXACT-SOLUTIONS; SPATIOTEMPORAL DISPERSION; DIFFERENTIAL-EQUATIONS; PERIODIC-SOLUTIONS; OPTICAL SOLITONS;
D O I
10.1016/j.ijleo.2016.10.136
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The nonlinear time-fractional Klein-Gordon equations play an important role in describing some physical events in solid state physics, nonlinear optics, and quantum field theory. In this paper, the time-fractional Klein-Gordon equations with quadratic and cubic non-linearities in the sense of the conformable fractional derivative are solved via the modified Kudryashov method. A few new explicit exact solutions of these equations are formally constructed. Results confirm the efficiency of the modified Kudryashov method in handling the conformable time-fractional Klein-Gordon equations with quadratic and cubic nonlinearities. (C) 2016 Elsevier GmbH. All rights reserved.
引用
收藏
页码:737 / 742
页数:6
相关论文
共 40 条
[1]   On conformable fractional calculus [J].
Abdeljawad, Thabet .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 :57-66
[2]  
Bekir A, 2014, COMPUT METHODS DIFFE, V2, P26
[3]   Exact solutions of nonlinear time fractional partial differential equations by sub-equation method [J].
Bekir, Ahmet ;
Aksoy, Esin ;
Cevikel, Adem C. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (13) :2779-2784
[4]   The First Integral Method for Exact Solutions of Nonlinear Fractional Differential Equations [J].
Bekir, Ahmet ;
Guner, Ozkan ;
Unsal, Omer .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2015, 10 (02)
[5]   Functional Variable Method for the Nonlinear Fractional Differential Equations [J].
Bekir, Ahmet ;
Guner, Ozkan ;
Aksoy, Esin ;
Pandir, Yusuf .
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
[6]   Optical solitons in nano-fibers with spatio-temporal dispersion by trial solution method [J].
Biswas, Anjan ;
Mirzazadeh, Mohammad ;
Eslami, Mostafa ;
Zhou, Qin ;
Bhrawy, Ali ;
Belic, Milivoj .
OPTIK, 2016, 127 (18) :7250-7257
[7]  
cenesiz Y., 2016, WAVES RANDOM COMPLEX
[8]   Traveling wave solutions of a (2+1)-dimensional Zakharov-like equation by the first integral method and the tanh method [J].
Darvishi, M. T. ;
Arbabi, S. ;
Najafi, M. ;
Wazwaz, A. M. .
OPTIK, 2016, 127 (16) :6312-6321
[9]   Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions [J].
Dehghan, Mehdi ;
Shokri, Ali .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 230 (02) :400-410
[10]   Exact structures for the KdV-mKdV equation with variable coefficients via the functional variable method [J].
Djoudi, W. ;
Zerarka, A. .
OPTIK, 2016, 127 (20) :9621-9626