On the Cauchy problem of a new integrable two-component Novikov equation

被引:3
作者
Mi, Yongsheng [1 ]
Huang, Daiwen [2 ]
机构
[1] Yangtze Normal Univ, Coll Math & Stat, Chongqing 408100, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2020年 / 193卷 / 02期
关键词
Besov spaces; Camassa-Holm type equation; Local well-posedness; Persistence properties; SHALLOW-WATER EQUATION; GLOBAL CONSERVATIVE SOLUTIONS; INVERSE SCATTERING TRANSFORM; CAMASSA-HOLM EQUATION; PERSISTENCE PROPERTIES; PARTICLE TRAJECTORIES; DISSIPATIVE SOLUTIONS; PROPAGATION SPEED; WELL-POSEDNESS; WAVE SOLUTIONS;
D O I
10.1007/s00605-020-01430-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to a new integrable two-component Novikov equation with Lax pairs and bi-Hamiltonian structures. Ons the one hand, based on a generalized Ovsyannikov type theorem, we prove the existence and uniqueness of solutions in the Gevrey-Sobolev spaces with the lower bound of the lifespan, and show the continuity of the data-to-solution map. On the other hand, we prove that the strong solutions maintain corresponding properties at infinity within its lifespan provided the initial data decay exponentially and algebraically, respectively.
引用
收藏
页码:361 / 381
页数:21
相关论文
共 76 条
[1]   SHARP ESTIMATES FOR ANALYTIC PSEUDODIFFERENTIAL-OPERATORS AND APPLICATION TO CAUCHY-PROBLEMS [J].
BAOUENDI, MS ;
GOULAOUIC, C .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1983, 48 (02) :241-268
[2]   Autonomous Ovsyannikov theorem and applications to nonlocal evolution equations and systems [J].
Barostichi, Rafael F. ;
Himonas, A. Alexandrou ;
Petronilho, Gerson .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (01) :330-358
[3]   INITIAL-VALUE PROBLEM FOR KORTEWEG-DEVRIES EQUATION [J].
BONA, JL ;
SMITH, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1975, 278 (1287) :555-601
[4]   Global dissipative solutions of the Camassa-Holm equation [J].
Bressan, Alberto ;
Constantin, Adrian .
ANALYSIS AND APPLICATIONS, 2007, 5 (01) :1-27
[5]   Global conservative solutions of the Camassa-Holm equation [J].
Bressan, Alberto ;
Constantin, Adrian .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 183 (02) :215-239
[6]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[7]  
Chemin J.-Y., 2004, CRM SERIES, V1, P53
[8]  
Constantin A, 2000, COMMUN PUR APPL MATH, V53, P603
[9]   On geodesic exponential maps of the Virasoro group [J].
Constantin, A. ;
Kappeler, T. ;
Kolev, B. ;
Topalov, P. .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2007, 31 (02) :155-180
[10]   Finite propagation speed for the Camassa-Holm equation [J].
Constantin, A .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (02)