Artificial Intelligence in Cardiac Imaging With Statistical Atlases of Cardiac Anatomy

被引:21
作者
Gilbert, Kathleen [1 ]
Mauger, Charlene [1 ,2 ]
Young, Alistair A. [2 ,3 ]
Suinesiaputra, Avan [2 ,4 ,5 ]
机构
[1] Univ Auckland, Auckland Bioengn Inst, Auckland, New Zealand
[2] Univ Auckland, Dept Anat & Med Imaging, Auckland, New Zealand
[3] Kings Coll London, Dept Biomed Engn, London, England
[4] Univ Leeds, Sch Comp, Ctr Computat Imaging & Simulat Technol Biomed, Leeds, W Yorkshire, England
[5] Univ Leeds, Leeds Inst Cardiovasc & Metab Med, Sch Med, Leeds, W Yorkshire, England
来源
FRONTIERS IN CARDIOVASCULAR MEDICINE | 2020年 / 7卷
基金
美国国家卫生研究院;
关键词
cardiac anatomy; machine learning; left ventricle; MRI; statistical shape; KNOWLEDGE-BASED RECONSTRUCTION; MAGNETIC-RESONANCE VOLUMETRY; RIGHT VENTRICLE; MOTION ATLAS; RISK-FACTORS; HEART; SHAPE; MR; TRANSPOSITION; SEGMENTATION;
D O I
10.3389/fcvm.2020.00102
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
In many cardiovascular pathologies, the shape and motion of the heart provide important clues to understanding the mechanisms of the disease and how it progresses over time. With the advent of large-scale cardiac data, statistical modeling of cardiac anatomy has become a powerful tool to provide automated, precise quantification of the status of patient-specific heart geometry with respect to reference populations. Powered by supervised or unsupervised machine learning algorithms, statistical cardiac shape analysis can be used to automatically identify and quantify the severity of heart diseases, to provide morphometric indices that are optimally associated with clinical factors, and to evaluate the likelihood of adverse outcomes. Recently, statistical cardiac atlases have been integrated with deep neural networks to enable anatomical consistency of cardiac segmentation, registration, and automated quality control. These combinations have already shown significant improvements in performance and avoid gross anatomical errors that could make the results unusable. This current trend is expected to grow in the near future. Here, we aim to provide a mini review highlighting recent advances in statistical atlasing of cardiac function in the context of artificial intelligence in cardiac imaging.
引用
收藏
页数:8
相关论文
共 55 条
  • [1] Left ventricular shape predicts different types of cardiovascular events in the general population
    Ambale-Venkatesh, Bharath
    Yoneyama, Kihei
    Sharma, Ravi K.
    Ohyama, Yoshiaki
    Wu, Colin O.
    Burke, Gregory L.
    Shea, Steven
    Gomes, Antoinette S.
    Young, Alistair A.
    Bluemke, David A.
    Lima, Joao A. C.
    [J]. HEART, 2017, 103 (07) : 507 - 515
  • [2] 3D Cardiac Shape Prediction with Deep Neural Networks: Simultaneous Use of Images and Patient Metadata
    Attar, Rahman
    Pereanez, Marco
    Bowles, Christopher
    Piechnik, Stefan K.
    Neubauer, Stefan
    Petersen, Steffen E.
    Frangi, Alejandro F.
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II, 2019, 11765 : 586 - 594
  • [3] Automated cardiovascular magnetic resonance image analysis with fully convolutional networks
    Bai, Wenjia
    Sinclair, Matthew
    Tarroni, Giacomo
    Oktay, Ozan
    Rajchl, Martin
    Vaillant, Ghislain
    Lee, Aaron M.
    Aung, Nay
    Lukaschuk, Elena
    Sanghvi, Mihir M.
    Zemrak, Filip
    Fung, Kenneth
    Paiva, Jose Miguel
    Carapella, Valentina
    Kim, Young Jin
    Suzuki, Hideaki
    Kainz, Bernhard
    Matthews, Paul M.
    Petersen, Steffen E.
    Piechnik, Stefan K.
    Neubauer, Stefan
    Glocker, Ben
    Rueckert, Daniel
    [J]. JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2018, 20
  • [4] A bi-ventricular cardiac atlas built from 1000+high resolution MR images of healthy subjects and an analysis of shape and motion
    Bai, Wenjia
    Shi, Wenzhe
    de Marvao, Antonio
    Dawes, Timothy J. W.
    O'Regan, Declan P.
    Cook, Stuart A.
    Rueckert, Daniel
    [J]. MEDICAL IMAGE ANALYSIS, 2015, 26 (01) : 133 - 145
  • [5] Deep-learning cardiac motion analysis for human survival prediction
    Bello, Ghalib A.
    Dawes, Timothy J. W.
    Duan, Jinming
    Biffi, Carlo
    de Marvao, Antonio
    Howard, Luke S. G. E.
    Gibbs, J. Simon R.
    Wilkins, Martin R.
    Cook, Stuart A.
    Rueckert, Daniel
    O'Regan, Declan P.
    [J]. NATURE MACHINE INTELLIGENCE, 2019, 1 (02) : 95 - +
  • [6] Explainable Anatomical Shape Analysis Through Deep Hierarchical Generative Models
    Biffi, Carlo
    Cerrolaza, Juan J.
    Tarroni, Giacomo
    Bai, Wenjia
    de Marvao, Antonio
    Oktay, Ozan
    Ledig, Christian
    Le Folgoc, Loic
    Kamnitsas, Konstantinos
    Doumou, Georgia
    Duan, Jinming
    Prasad, Sanjay K.
    Cook, Stuart A.
    O'Regan, Declan P.
    Rueckert, Daniel
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (06) : 2088 - 2099
  • [7] Biffi C, 2018, BIOINFORMATICS, V34, P97, DOI [10.1093/bioinformatics/btx552, 10.5281/zenodo.834610]
  • [8] Multi-ethnic study of atherosclerosis: Objectives and design
    Bild, DE
    Bluemke, DA
    Burke, GL
    Detrano, R
    Roux, AVD
    Folsom, AR
    Greenland, P
    Jacobs, DR
    Kronmal, R
    Liu, K
    Nelson, JC
    O'Leary, D
    Saad, MF
    Shea, S
    Szklo, M
    Tracy, RP
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2002, 156 (09) : 871 - 881
  • [9] Deep Learning in Cardiology
    Bizopoulos, Paschalis
    Koutsouris, Dimitrios
    [J]. IEEE REVIEWS IN BIOMEDICAL ENGINEERING, 2019, 12 : 168 - 193
  • [10] The Relationship of Left Ventricular Mass and Geometry to Incident Cardiovascular Events
    Bluemke, David A.
    Kronmal, Richard A.
    Lima, Joao A. C.
    Liu, Kiang
    Olson, Jean
    Burke, Gregory L.
    Folsom, Aaron R.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2008, 52 (25) : 2148 - 2155