EFFECTS OF CLIMATE CHANGE ON GLOBAL SEAWEED COMMUNITIES

被引:498
作者
Harley, Christopher D. G. [1 ,2 ]
Anderson, Kathryn M. [1 ,2 ]
Demes, Kyle W. [1 ,2 ]
Jorve, Jennifer P. [1 ,2 ]
Kordas, Rebecca L. [1 ,2 ]
Coyle, Theraesa A. [1 ,2 ]
Graham, Michael H. [3 ]
机构
[1] Univ British Columbia, Dept Zool, Vancouver, BC V6T 1Z4, Canada
[2] Univ British Columbia, Biodivers Res Ctr, Vancouver, BC V6T 1Z4, Canada
[3] Moss Landing Marine Labs, Moss Landing, CA 95039 USA
基金
美国国家科学基金会;
关键词
adaptation; carbon dioxide; climate change; community structure; competition; ecophysiology; ecosystem function; herbivory; marine macroalgae; ocean acidification; KELP MACROCYSTIS-PYRIFERA; ATMOSPHERIC CARBON-DIOXIDE; OCEAN ACIDIFICATION; GIANT-KELP; CORALLINE ALGAE; ELEVATED CO2; DISTRIBUTIONAL SHIFTS; INTERTIDAL MACROALGAE; SPOROPHYTE PRODUCTION; NET PHOTOSYNTHESIS;
D O I
10.1111/j.1529-8817.2012.01224.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Seaweeds are ecologically important primary producers, competitors, and ecosystem engineers that play a central role in coastal habitats ranging from kelp forests to coral reefs. Although seaweeds are known to be vulnerable to physical and chemical changes in the marine environment, the impacts of ongoing and future anthropogenic climate change in seaweed-dominated ecosystems remain poorly understood. In this review, we describe the ways in which changes in the environment directly affect seaweeds in terms of their physiology, growth, reproduction, and survival. We consider the extent to which seaweed species may be able to respond to these changes via adaptation or migration. We also examine the extensive reshuffling of communities that is occurring as the ecological balance between competing species changes, and as top-down control by herbivores becomes stronger or weaker. Finally, we delve into some of the ecosystem-level responses to these changes, including changes in primary productivity, diversity, and resilience. Although there are several key areas in which ecological insight is lacking, we suggest that reasonable climate-related hypotheses can be developed and tested based on current information. By strategically prioritizing research in the areas of complex environmental variation, multiple stressor effects, evolutionary adaptation, and population, community, and ecosystem-level responses, we can rapidly build upon our current understanding of seaweed biology and climate change ecology to more effectively conserve and manage coastal ecosystems.
引用
收藏
页码:1064 / 1078
页数:15
相关论文
共 164 条
[1]   Adaptation, migration or extirpation: climate change outcomes for tree populations [J].
Aitken, Sally N. ;
Yeaman, Sam ;
Holliday, Jason A. ;
Wang, Tongli ;
Curtis-McLane, Sierra .
EVOLUTIONARY APPLICATIONS, 2008, 1 (01) :95-111
[2]  
Miller KA, 2011, HIDROBIOLOGICA, V21, P365
[3]   Ocean acidification causes bleaching and productivity loss in coral reef builders [J].
Anthony, K. R. N. ;
Kline, D. I. ;
Diaz-Pulido, G. ;
Dove, S. ;
Hoegh-Guldberg, O. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (45) :17442-17446
[4]   Ocean acidification and warming will lower coral reef resilience [J].
Anthony, Kenneth R. N. ;
Maynard, Jeffrey A. ;
Diaz-Pulido, Guillermo ;
Mumby, Peter J. ;
Marshall, Paul A. ;
Cao, Long ;
Hoegh-Guldberg, Ove .
GLOBAL CHANGE BIOLOGY, 2011, 17 (05) :1798-1808
[5]   Eight glacial cycles from an Antarctic ice core [J].
Augustin, L ;
Barbante, C ;
Barnes, PRF ;
Barnola, JM ;
Bigler, M ;
Castellano, E ;
Cattani, O ;
Chappellaz, J ;
DahlJensen, D ;
Delmonte, B ;
Dreyfus, G ;
Durand, G ;
Falourd, S ;
Fischer, H ;
Flückiger, J ;
Hansson, ME ;
Huybrechts, P ;
Jugie, R ;
Johnsen, SJ ;
Jouzel, J ;
Kaufmann, P ;
Kipfstuhl, J ;
Lambert, F ;
Lipenkov, VY ;
Littot, GVC ;
Longinelli, A ;
Lorrain, R ;
Maggi, V ;
Masson-Delmotte, V ;
Miller, H ;
Mulvaney, R ;
Oerlemans, J ;
Oerter, H ;
Orombelli, G ;
Parrenin, F ;
Peel, DA ;
Petit, JR ;
Raynaud, D ;
Ritz, C ;
Ruth, U ;
Schwander, J ;
Siegenthaler, U ;
Souchez, R ;
Stauffer, B ;
Steffensen, JP ;
Stenni, B ;
Stocker, TF ;
Tabacco, IE ;
Udisti, R ;
van de Wal, RSW .
NATURE, 2004, 429 (6992) :623-628
[6]   Recruitment facilitation can drive alternative states on temperate reefs [J].
Baskett, Marissa L. ;
Salomon, Anne K. .
ECOLOGY, 2010, 91 (06) :1763-1773
[7]   Biodiversity of marine plants in an era of climate change: Some predictions based on physiological performance [J].
Beardall, J ;
Beer, S ;
Raven, JA .
BOTANICA MARINA, 1998, 41 (01) :113-123
[8]  
Benedetti-Cecchi L, 2006, ECOLOGY, V87, P2489, DOI 10.1890/0012-9658(2006)87[2489:TVRTIO]2.0.CO
[9]  
2
[10]   Diversity of intertidal macroalgae increases with nitrogen loading by invertebrates [J].
Bracken, MES ;
Nielsen, KJ .
ECOLOGY, 2004, 85 (10) :2828-2836