Constraining a neutron star merger origin for localized fast radio bursts

被引:23
|
作者
Gourdji, K. [1 ]
Rowlinson, A. [1 ,2 ]
Wijers, R. A. M. J. [1 ]
Goldstein, A. [3 ]
机构
[1] Univ Amsterdam, Anton Pannekoek Inst Astron, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[2] ASTRON, Netherlands Inst Radio Astron, Oude Hoogeveensedijk 4, NL-7991 PD Dwingeloo, Netherlands
[3] Univ Space Res Assoc, Sci & Technol Inst, Huntsville, AL 35805 USA
基金
美国国家航空航天局;
关键词
radiation mechanisms: non-thermal; stars: magnetars; stars: neutron; fast radio bursts; gamma-ray bursts neutron; star mergers; SYNCHROTRON MASER EMISSION; SIGNATURES; PRECURSORS; MAGNETAR; ENGINES; SHOCKS;
D O I
10.1093/mnras/staa2128
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
What the progenitors of fast radio bursts (FRBs) are, and whether there are multiple types of progenitors are open questions. The advent of localized FRBs with host galaxy redshifts allows the various emission models to be directly tested for the first time. Given the recent localizations of two non-repeating FRBs (FRB 180924 and FRB 190523), we discuss a selection of FRB emission models and demonstrate how we can place constraints on key model parameters such as e magnetic field strength and age of the putative FRB-emitting neutron star. In particular, we focus on models related to compact binary merger events involving at least one neutron star, motivated by commonalities between the host galaxies of the FRBs and the hosts of such merger events/short gamma-ray bursts (SGRBs). We rule out the possibility that either FRB was produced during the final inspiral stage of a merging binary system. Where possible, we predict the light curve of electromagnetic emission associated with a given model and use it to recommend multiwavelength follow-up strategies that may help confirm or rule out models for future FRBs. In addition, we conduct a targeted sub-threshold search in Fermi Gamma-ray Burst Monitor data for potential SGRB candidates associated with either FRB, and show what a non-detection means for relevant models. The methodology presented in this study may be easily applied to future localized FRBs, and adapted to sources with possibly core-collapse supernova progenitors, to help constrain potential models for the FRB population at large.
引用
收藏
页码:3131 / 3141
页数:11
相关论文
共 50 条
  • [41] AFTERGLOW OF A BINARY NEUTRON STAR MERGER
    Shibata, Masaru
    Suwa, Yudai
    Kiuchi, Kenta
    Ioka, Kunihito
    ASTROPHYSICAL JOURNAL LETTERS, 2011, 734 (02)
  • [42] Pulsar revival in neutron star mergers: multimessenger prospects for the discovery of pre-merger coherent radio emission
    Cooper, A. J.
    Gupta, O.
    Wadiasingh, Z.
    Wijers, R. A. M. J.
    Boersma, O. M.
    Andreoni, I
    Rowlinson, A.
    Gourdji, K.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 519 (03) : 3923 - 3946
  • [43] A living theory catalogue for fast radio bursts
    Platts, E.
    Weltman, A.
    Walters, A.
    Tendulkar, S. P.
    Gordin, J. E. B.
    Kandhai, S.
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2019, 821 : 1 - 27
  • [44] The Origins of Narrow Spectra of Fast Radio Bursts
    Kumar, Pawan
    Qu, Yuanhong
    Zhang, Bing
    ASTROPHYSICAL JOURNAL, 2024, 974 (02):
  • [45] Collisions of Neutron Stars with Primordial Black Holes as Fast Radio Bursts Engines
    Abramowicz, Marek A.
    Bejger, Michal
    Wielgus, Maciek
    ASTROPHYSICAL JOURNAL, 2018, 868 (01):
  • [46] The physics of fast radio bursts
    Xiao, Di
    Wang, FaYin
    Dai, ZiGao
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2021, 64 (04)
  • [47] The physics of fast radio bursts
    Zhang, Bing
    REVIEWS OF MODERN PHYSICS, 2023, 95 (03)
  • [48] AN OVERVIEW OF FAST RADIO BURSTS
    Romero, Gustavo E.
    XV LATIN AMERICAN REGIONAL IAU MEETING, 2016, 2017, 49 : 7 - 10
  • [49] Unveiling the origin of fast radio bursts by optical follow-up observations
    Niino, Yuu
    Totani, Tomonori
    Okumura, Jun E.
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN, 2014, 66 (06)
  • [50] On the Energy Budget of Starquake-induced Repeating Fast Radio Bursts
    Wang, Wei-Yang
    Zhang, Chen
    Zhou, Enping
    Liu, Xiaohui
    Niu, Jiarui
    Zhou, Zixuan
    Gao, He
    Liu, Jifeng
    Xu, Renxin
    Zhang, Bing
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2024, 24 (10)