Recent Advances in Metal Oxide-based Electrode Architecture Design for Electrochemical Energy Storage

被引:2350
作者
Jiang, Jian [1 ]
Li, Yuanyuan [2 ]
Liu, Jinping [1 ]
Huang, Xintang [1 ]
Yuan, Changzhou [3 ]
Lou, Xiong Wen [3 ]
机构
[1] Cent China Normal Univ, Dept Phys, Inst Nanosci & Nanotechnol, Wuhan 430079, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
[3] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 637457, Singapore
基金
中国国家自然科学基金;
关键词
SOLID-STATE SUPERCAPACITORS; PERFORMANCE ANODE MATERIALS; LITHIUM ION BATTERIES; ONE-POT SYNTHESIS; HIGH-POWER; MANGANESE OXIDE; CARBON-NANOTUBE; FLEXIBLE SUPERCAPACITORS; CORE/SHELL ARRAYS; MATERIALS SCIENCE;
D O I
10.1002/adma.201202146
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metal oxide nanostructures are promising electrode materials for lithium-ion batteries and supercapacitors because of their high specific capacity/capacitance, typically 23 times higher than that of the carbon/graphite-based materials. However, their cycling stability and rate performance still can not meet the requirements of practical applications. It is therefore urgent to improve their overall device performance, which depends on not only the development of advanced electrode materials but also in a large part how to design superior electrode architectures. In the article, we will review recent advances in strategies for advanced metal oxide-based hybrid nanostructure design, with the focus on the binder-free film/array electrodes. These binder-free electrodes, with the integration of unique merits of each component, can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance. Several recently emerged concepts of using ordered nanostructure arrays, synergetic core-shell structures, nanostructured current collectors, and flexible paper/textile electrodes will be highlighted, pointing out advantages and challenges where appropriate. Some future electrode design trends and directions are also discussed.
引用
收藏
页码:5166 / 5180
页数:15
相关论文
共 131 条
  • [1] Nanostructured materials for advanced energy conversion and storage devices
    Aricò, AS
    Bruce, P
    Scrosati, B
    Tarascon, JM
    Van Schalkwijk, W
    [J]. NATURE MATERIALS, 2005, 4 (05) : 366 - 377
  • [2] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [3] Armand M, 2009, NAT MATER, V8, P621, DOI [10.1038/NMAT2448, 10.1038/nmat2448]
  • [4] Flexible Zn2SnO4/MnO2 Core/Shell Nanocable-Carbon Microfiber Hybrid Composites for High-Performance Supercapacitor Electrodes
    Bao, Lihong
    Zang, Jianfeng
    Li, Xiaodong
    [J]. NANO LETTERS, 2011, 11 (03) : 1215 - 1220
  • [5] N and p doped poly(3,4-ethylenedioxythiophene) electrode materials for symmetric redox supercapacitors
    Bhat, D. Krishna
    Kumar, M. Selva
    [J]. JOURNAL OF MATERIALS SCIENCE, 2007, 42 (19) : 8158 - 8162
  • [6] Self-doped polyaniline on functionalized carbon cloth as electroactive materials for supercapacitor
    Bian, Li-Jun
    Luan, Feng
    Liu, Sha-Sha
    Liu, Xiao-Xia
    [J]. ELECTROCHIMICA ACTA, 2012, 64 : 17 - 22
  • [7] Nanomaterials for rechargeable lithium batteries
    Bruce, Peter G.
    Scrosati, Bruno
    Tarascon, Jean-Marie
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) : 2930 - 2946
  • [8] Cu-Si Nanocable Arrays as High-Rate Anode Materials for Lithium-Ion Batteries
    Cao, Fei-Fei
    Deng, Jun-Wen
    Xin, Sen
    Ji, Heng-Xing
    Schmidt, Oliver G.
    Wan, Li-Jun
    Guo, Yu-Guo
    [J]. ADVANCED MATERIALS, 2011, 23 (38) : 4415 - +
  • [9] Template-based synthesis of nanorod, nanowire, and nanotube arrays
    Cao, Guozhong
    Liu, Dawei
    [J]. ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2008, 136 (1-2) : 45 - 64
  • [10] Carbon nanotubule membranes for electrochemical energy storage and production
    Che, GL
    Lakshmi, BB
    Fisher, ER
    Martin, CR
    [J]. NATURE, 1998, 393 (6683) : 346 - 349