Fully commutative elements in finite and affine Coxeter groups

被引:15
作者
Biagioli, Riccardo [1 ]
Jouhet, Frederic [1 ]
Nadeau, Philippe [2 ]
机构
[1] Univ Lyon 1, Inst Camille Jordan, F-69622 Villeurbanne, France
[2] Univ Lyon 1, Inst Camille Jordan, CNRS, F-69622 Villeurbanne, France
来源
MONATSHEFTE FUR MATHEMATIK | 2015年 / 178卷 / 01期
关键词
Fully commutative elements; Temperley-Lieb algebras; Coxeter groups; Generating functions; Lattice walks; Heaps; KAZHDAN-LUSZTIG CELLS; REPRESENTATIONS; PERMUTATIONS; ENUMERATION;
D O I
10.1007/s00605-014-0674-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An element of a Coxeter group is fully commutative if any two of its reduced decompositions are related by a series of transpositions of adjacent commuting generators. These elements were extensively studied by Stembridge, in particular in the finite case. They index naturally a basis of the generalized Temperley-Lieb algebra. In this work we deal with any finite or affine Coxeter group , and we give explicit descriptions of fully commutative elements. Using our characterizations we then enumerate these elements according to their Coxeter length, and find in particular that the corrresponding growth sequence is ultimately periodic in each type. When the sequence is infinite, this implies that the associated Temperley-Lieb algebra has linear growth.
引用
收藏
页码:1 / 37
页数:37
相关论文
共 33 条
[1]  
Al Harbat S., 2013, ARXIV13117089
[2]  
[Anonymous], 1990, Reflection groups and Coxeter groups
[3]  
[Anonymous], GAP-Groups, Algorithms, and Programming, Version 4.12dev
[4]   Some permutations with forbidden subsequences and their inversion number [J].
Barcucci, E ;
De Lungo, A ;
Pergola, E ;
Pinzani, R .
DISCRETE MATHEMATICS, 2001, 234 (1-3) :1-15
[5]   SOME COMBINATORIAL PROPERTIES OF SCHUBERT POLYNOMIALS [J].
BILLEY, SC ;
JOCKUSCH, W ;
STANLEY, RP .
JOURNAL OF ALGEBRAIC COMBINATORICS, 1993, 2 (04) :345-374
[6]  
Bjorner A., 2005, GRAD TEXT M, V231
[7]   A method for the enumeration of various classes of column-convex polygons [J].
BousquetMelou, M .
DISCRETE MATHEMATICS, 1996, 154 (1-3) :1-25
[8]  
Ernst D.C., 2011, ARXIV11014215
[9]  
Fan C. K., 1995, Ph.D. Thesis
[10]   Structure of a Hecke algebra quotient [J].
Fan, CK .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 10 (01) :139-167