Edge-Augmented Fourier Partial Sums with Applications to Magnetic Resonance Imaging (MRI)

被引:0
作者
Larriva-Latt, Jade [1 ]
Morrison, Angela [2 ]
Radgowski, Alison [3 ]
Tobin, Joseph [4 ,5 ]
Iwen, Mark [6 ,7 ]
Viswanathan, Aditya [8 ]
机构
[1] Wellesley Coll, Dept Math, Wellesley, MA 02481 USA
[2] Albion Coll, Dept Math & Comp Sci, Albion, MI 49224 USA
[3] Goucher Coll, Dept Math & Comp Sci, Baltimore, MD 21204 USA
[4] Univ Virginia, Dept Comp Sci, Charlottesville, VA 22904 USA
[5] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA
[6] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[7] Michigan State Univ, Dept Computat Math Sci & Engn CMSE, E Lansing, MI 48824 USA
[8] Univ Michigan Dearborn, Dept Math & Stat, Dearborn, MI 48128 USA
来源
WAVELETS AND SPARSITY XVII | 2017年 / 10394卷
关键词
Fourier Reconstruction; Gibbs Phenomenon; Edge Detection; MR Imaging; PARAMETER-ESTIMATION; SPECTRAL DATA; FINITE RATE; RECONSTRUCTION; SUPERRESOLUTION; INNOVATION; SIGNALS; NOISE;
D O I
10.1117/12.2271860
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Certain applications such as Magnetic Resonance Imaging (MRI) require the reconstruction of functions from Fourier spectral data. When the underlying functions are piecewise-smooth, standard Fourier approximation methods suffer from the Gibbs phenomenon with associated oscillatory artifacts in the vicinity of edges and an overall reduced order of convergence in the approximation. This paper proposes an edge-augmented Fourier reconstruction procedure which uses only the first few Fourier coefficients of an underlying piecewise-smooth function to accurately estimate jump information and then incorporate it into a Fourier partial sum approximation. We provide both theoretical and empirical results showing the improved accuracy of the proposed method, as well as comparisons demonstrating superior performance over existing state-of-the-art sparse optimization-based methods.
引用
收藏
页数:8
相关论文
共 22 条
[1]   A method to reduce the Gibbs ringing artifact in MRI scans while keeping tissue boundary integrity [J].
Archibald, R ;
Gelb, A .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2002, 21 (04) :305-319
[2]   COMPLETE ALGEBRAIC RECONSTRUCTION OF PIECEWISE-SMOOTH FUNCTIONS FROM FOURIER DATA [J].
Batenkov, Dmitry .
MATHEMATICS OF COMPUTATION, 2015, 84 (295) :2329-2350
[3]   Stable signal recovery from incomplete and inaccurate measurements [J].
Candes, Emmanuel J. ;
Romberg, Justin K. ;
Tao, Terence .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (08) :1207-1223
[4]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[5]   Detection of edges in spectral data II. Nonlinear enhancement [J].
Gelb, A ;
Tadmor, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (04) :1389-1408
[6]   Adaptive edge detectors for piecewise smooth data based on the minmod limiter [J].
Gelb, A. ;
Tadmor, E. .
JOURNAL OF SCIENTIFIC COMPUTING, 2006, 28 (2-3) :279-306
[7]   Detection of edges in spectral data [J].
Gelb, A ;
Tadmor, E .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1999, 7 (01) :101-135
[8]   SUPERRESOLUTION RECONSTRUCTION THROUGH OBJECT MODELING AND PARAMETER-ESTIMATION [J].
HAACKE, EM ;
LIANG, ZP ;
IZEN, SH .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1989, 37 (04) :592-595
[9]   CONSTRAINED RECONSTRUCTION - A SUPERRESOLUTION, OPTIMAL SIGNAL-TO-NOISE ALTERNATIVE TO THE FOURIER-TRANSFORM IN MAGNETIC-RESONANCE IMAGING [J].
HAACKE, EM ;
LIANG, ZP ;
IZEN, SH .
MEDICAL PHYSICS, 1989, 16 (03) :388-397
[10]  
Hesthaven J. S., 2007, Cambridge Monographs on Applied and Computational Mathematics, V21