Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils

被引:172
作者
Singla-Pareek, SL [1 ]
Yadav, SK
Pareek, A
Reddy, MK
Sopory, SK
机构
[1] Int Ctr Genet Engn & Biotechnol, New Delhi 110067, India
[2] Jawaharlal Nehru Univ, Sch Life Sci, Stress Physiol & Mol Biol Lab, New Delhi 110067, India
关键词
D O I
10.1104/pp.105.073734
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
We reported earlier that engineering of the glyoxalase pathway (a two-step reaction mediated through glyoxalase I and II enzymes) enhances salinity tolerance. Here we report the extended suitability of this engineering strategy for improved heavy-metal tolerance in transgenic tobacco (Nicotiana tabacum). The glyoxalase transgenics were able to grow, flower, and set normal viable seeds in the presence of 5 mM ZnCl2 without any yield penalty. The endogenous ion content measurements revealed roots to be the major sink for excess zinc accumulation, with negligible amounts in seeds in transgenic plants. Preliminary observations suggest that glyoxalase overexpression could confer tolerance to other heavy metals, such as cadmium or lead. Comparison of relative tolerance capacities of transgenic plants, overexpressing either glyoxalase I or II individually or together in double transgenics, evaluated in terms of various critical parameters such as survival, growth, and yield, reflected double transgenics to perform better than either of the single-gene transformants. Biochemical investigations indicated restricted methylglyoxal accumulation and less lipid peroxidation under high zinc conditions in transgenic plants. Studies employing the glutathione biosynthetic inhibitor, buthionine sulfoximine, suggested an increase in the level of phytochelatins and maintenance of glutathione homeostasis in transgenic plants during exposure to excess zinc as the possible mechanism behind this tolerance. Together, these findings presents a novel strategy to develop multiple stress tolerance via glyoxalase pathway engineering, thus implicating its potential use in engineering agriculturally important crop plants to grow on rapidly deteriorating lands with multiple unfavorable edaphic factors.
引用
收藏
页码:613 / 623
页数:11
相关论文
共 81 条
[1]   The Saccharomyces cerevisiae aldose, reductase is implied in the metabolism of methylglyoxal in response to stress conditions [J].
Aguilera, J ;
Prieto, JA .
CURRENT GENETICS, 2001, 39 (5-6) :273-283
[2]   Poplar metal tolerance protein 1 confers zinc tolerance and is an oligomeric vacuolar zinc transporter with an essential leucine zipper motif [J].
Blaudez, D ;
Kohler, A ;
Martin, F ;
Sanders, D ;
Chalot, M .
PLANT CELL, 2003, 15 (12) :2911-2928
[3]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[4]   Tansley review No. 111 - Possible roles of zinc in protecting plant cells from damage by reactive oxygen species [J].
Cakmak, I .
NEW PHYTOLOGIST, 2000, 146 (02) :185-205
[5]   Characterization of phytochelatin synthase from tomato [J].
Chen, JJ ;
Zhou, JM ;
Goldsbrough, PB .
PHYSIOLOGIA PLANTARUM, 1997, 101 (01) :165-172
[6]   A long way ahead:: understanding and engineering plant metal accumulation [J].
Clemens, S ;
Palmgren, MG ;
Krämer, U .
TRENDS IN PLANT SCIENCE, 2002, 7 (07) :309-315
[7]   Molecular mechanisms of plant metal tolerance and homeostasis [J].
Clemens, S .
PLANTA, 2001, 212 (04) :475-486
[8]   Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast [J].
Clemens, S ;
Kim, EJ ;
Neumann, D ;
Schroeder, JI .
EMBO JOURNAL, 1999, 18 (12) :3325-3333
[9]   METABOLISM OF METHYLGLYOXAL IN MICROORGANISMS [J].
COOPER, RA .
ANNUAL REVIEW OF MICROBIOLOGY, 1984, 38 :49-68
[10]   Dual action of the active oxygen species during plant stress responses [J].
Dat, J ;
Vandenabeele, S ;
Vranová, E ;
Van Montagu, M ;
Inzé, D ;
Van Breusegem, F .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2000, 57 (05) :779-795