The fourth-order time-discrete scheme and split-step direct meshless finite volume method for solving cubic-quintic complex Ginzburg-Landau equations on complicated geometries
被引:16
作者:
论文数: 引用数:
h-index:
机构:
Abbaszadeh, Mostafa
[1
]
Dehghan, Mehdi
论文数: 0引用数: 0
h-index: 0
机构:
Amirkabir Univ Technol, Fac Math & Comp Sci, Dept Appl Math, 424 Hafez Ave, Tehran 15914, IranAmirkabir Univ Technol, Fac Math & Comp Sci, Dept Appl Math, 424 Hafez Ave, Tehran 15914, Iran
Dehghan, Mehdi
[1
]
机构:
[1] Amirkabir Univ Technol, Fac Math & Comp Sci, Dept Appl Math, 424 Hafez Ave, Tehran 15914, Iran
Direct meshless local Petrov-Galerkin (DMLPG) method;
Fourth-order exponential time differencing Runge-Kutta method;
Ginzburg-Landau equation;
Cubic quantic complex PDEs;
LOCAL COLLOCATION METHOD;
FREE GALERKIN METHOD;
DIFFERENCE METHOD;
SOLITON-SOLUTIONS;
SWIFT-HOHENBERG;
SPECTRAL METHOD;
BOUNDARY NODE;
CAHN-HILLIARD;
DMLPG METHOD;
MLPG METHOD;
D O I:
10.1007/s00366-020-01089-6
中图分类号:
TP39 [计算机的应用];
学科分类号:
081203 ;
0835 ;
摘要:
Our motivation in this contribution is to propose a new numerical algorithm for solving cubic-quintic complex Ginzburg-Landau (CQCGL) equations. The developed technique is based on the following stages. At the first step, the nonlinear CQCGL equation is splitted in the three problems that two of them don't have the space derivative e.g problems (I) and (III) and one of them has the space derivative e.g Problem (II). At the second stage, the Problems (I) and (III) can be considered as two ODEs and they are solved by using a fourth-order exponential time differencing Runge-Kutta (ETDRK4) method to get a high-order numerical approximation. Furthermore, the Problem (II) is solved by using direct meshless finite volume method. The proposed method is a new high-order numerical procedure based on a truly meshless method for solving the complex PDEs on non-rectangular computational domains. Moreover, various samples are investigated that verify the efficiency of the new numerical scheme.
机构:
Amirkabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, 424 Hafez Ave, Tehran 15914, IranArizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
Dehghan, Mehdi
Heitzinger, Clemens
论文数: 0引用数: 0
h-index: 0
机构:
Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
Vienna Univ Technol TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, AustriaArizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
机构:
Amirkabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, 424 Hafez Ave, Tehran 15914, IranArizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
Dehghan, Mehdi
Heitzinger, Clemens
论文数: 0引用数: 0
h-index: 0
机构:
Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
Vienna Univ Technol TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, AustriaArizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA